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Abstract

The problem of the airplane wing cutting through the exterior columns of the World Trade Center is
treated analytically. The exterior columns are thin-walled box beam made of high strength steel. The
complex structure of the airplane is lumped into another box, but it has been found that the equivalent
thickness of the box is an order of magnitude larger than the column thickness. The problem can be then
modeled as an impact of a rigid mass traveling with the velocity of 240m/s into a hollow box-like vertical
member. The deformation and failure process is very local and is broken into three phases: shearing of the
impacting flange; tearing of side webs; and tensile fracture of the rear flange. Using the exact dynamic
solution in the membrane deformation mode, the critical impact velocity to fracture the impacted flange
was calculated to be 155m/s for both flat and round impacting mass. Therefore, the wing would easily cut
through the outer column. It was also found that the energy absorbed by plastic deformation and fracture
of the ill-fated column is only 6.7% of the initial kinetic energy of the wing.
r 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The September 11th attack demonstrated the vulnerability of tall steel buildings to the impact
of a fast moving airplane. Millions of terrified spectators around the world watched as the Boeing
767 moving with a cruising speed of 240 m=s (500mph) hit the exterior wall of the World Trade
Center (WTC), cut through it, and disappeared in the smoky cavity, Fig. 1, Ref. [1]. To the casual
observer, it would appear that the facade of the Twin Towers did not offer any resistance at all,
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Nomenclature

2a average height of the wing beam
b breadth of the exterior column
c stress wave speed
cb velocity of the propagating bending hinge
cN asymptotic value of stress wave speed
E0 initial kinetic energy
Etear tearing work of the webs
DE total dissipated kinetic energy
F tearing force
h thickness of the exterior column
heq equivalent thickness of the wing beam
lw wing span of the aircraft
m mass per unit length of the beam
M weight of the aircraft
M0 mass of the rigid projectile
n material hardening exponent
N0 fully plastic axial force
q plastic foundation resistance per unit length
Q shear force
R radius of the cylindrical projectile
t time
t1 time when the waves begin to propagate ahead of the contact point
tf final tearing time
V0 impact velocity
V1 velocity immediately after the impact on the front flange
V2 velocity after cutting the web
V3 velocity after cutting the rear flange
V�

2 velocity after the impact on the web
ðV0Þcr critical velocity to fracture the beam
w transverse deflection
w0 slope
’w transverse velocity
.w transverse acceleration
x distance from the impact point

Greek symbols

a wrapping angle of the cylindrical projectile
af critical wrapping angle to fracture the beam
b mass ratio in the case of the propagating hinge
e strain in the beam-string
ef fracture strain
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and that the plane’s wings and fuselage sliced through the exterior columns as if they were made of
cardboard. This casual observation is confirmed by comparing the shape of the hole driven into
the exterior walls with the outline of the plane. One can clearly see the position of the fuselage,
two engines, and above all two symmetric narrow slots cut by the wings. A slightly larger opening
was caused by the falling floor, which dragged the sections of the exterior columns inside the
building. How was it possible that the relatively weak, light and airy airframe damaged the
apparently heavy lattice of high strength steel columns? The devastating result of this encounter
came as a surprise to the engineering and scientific community or at least to the present authors.

The objective of this research is not only to unravel the mystery behind this interactive failure
but even more importantly to develop a general two-dimensional dynamic model of ductile
fracture and break up of two beam-like structures of comparable strength hitting each other with
high velocity. Such an undertaking will also be helpful in explaining subsequent stages of the
impacts in which fragments of the airframe plowed through the truss-like floor of the WTC
Towers and hit the core structure.

y propagation angle of the diverging crack
m mass ratio
x wave front location
r mass density
s0 plastic flow stress
sy yield stress
su stress corresponding to the fracture strain

Fig. 1. A ‘‘clean’’ cut driven by the wings of a Boeing 767 into the facade of the North Tower.

T. Wierzbicki, X. Teng / International Journal of Impact Engineering 28 (2003) 601–625 603



The airplane wing is a complex structure composed of open section beams, ribs, and skin
reinforced by stringers. Upon impact by smaller objects such as hail, birds, etc. the leading edge of
the airfoil will clearly be dented and the degree of damage will depend on the size and speed of the
aircraft. The process of interactive failure of two deformable and fracturing bodies is very
complex and could only be solved by means of numerical methods.

However, it was observed that if all structural members of the wing are lumped together and
smeared into a box beam of equivalent mass, its thickness becomes over 100mm which is ten times
larger than the 9.5mm thickness of the hollow external column of the Twin Towers. Therefore, in
the first approximation, the impacting segment of the wing is treated as a rigid mass. The failure
process of the exterior column is divided into three phases: instantaneous cutting through the
front flange; tearing of side webs; and finally, tensile fracture of the rear flange. The impact
problem is dominated by the local inertia of the box column so that plastic deformation and
fracture are restricted to the immediate vicinity of the stricken part of the column. Each stage of
the failure process is analyzed in the paper using the rigorous calculation method while still
retaining the simplicity of the closed-form solutions.

It is recognized that the fuel in the wing tanks will greatly increase the mass per unit length of
the wings and add to their devastating power. High velocity impact of fuel-filled tanks into
deformable structures constitutes a challenging problem by itself and will be addressed in future
research.

To the best of the author’s knowledge, the problem of a thin-walled box beam subjected to high
velocity impact of a rigid mass was not considered in the open literature. However, there are
numerous theoretical and experimental studies dealing with projectile impact on thin plates. For a
comprehensive review of the mechanics and physics of projectile impact, the reader is referred to
the articles by Corbett et al. [2] and Goldsmith [3]. Hoo Fatt and Wierzbicki [4] showed that for
relatively thin plates, where response is dominated by the membrane action, the critical impact
velocity for penetration calculated on the basis of tensile necking or shear plugging was similar.
Jones et al. [5] demonstrated through a thorough theoretical analysis that the energy absorbed by
plastic deformation is dominated by the membrane response for thin plates (relative to the
projectile radius). The contribution of shear increases with the plate thickness for lighter
projectiles. This result was independently confirmed by Hoo Fatt et al. [6].

A comprehensive study on plastic response and fracture of beams loaded by a falling mass was
undertaken by Jones and his co-workers [7–11]. They showed that thin beams fail by a
combination of tensile necking and through thickness plugging. Based on extensive testing, a
stress-based failure condition was established involving shear and membrane forces and bending
moments [12]. Since most of the tests were performed in a drop tower facility with relatively large
masses and slow impact speeds, the obtained results apply to a lower end of impact velocity
spectrum up to 20 m=s:

Hoo Fatt and Wierzbicki [13] developed a theory of high velocity impact into free–free plastic
beams and a beam supported by a plastic foundation. An interesting feature of this approach was
a dual formulation that led to identical results. First, a local dynamic approach was taken leading
to the wave equation with suitable boundary and initial conditions. Then, the same problem was
formulated and solved using the principle of conservation of linear momentum. In both cases a
characteristic velocity of propagation of lateral disturbances was identified which can serve as a
convenient reference value for quantification of impact velocities. The above theory can also
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predict the onset of fracture with relatively simple calculations. This theory was found to be
particularly well suited for solving a difficult problem of a mass impact into a box beam that
involves a complex interactive failure pattern. A similar problem was solved in a very rigorous
way in Ref. [14] using a plastic wave propagation theory.

2. Structural modeling of the airplane

2.1. Wings

The operation weight of the Boeing 767 is taken to be M ¼ 120 tons [1]. It is further assumed
that the engine and wings contribute 25% each of the aircraft mass. Wings of modern transport
aircraft are quite complicated structures consisting of open section beams, ribs, and a skin
reinforced by stringers. Together they form a very stiff and strong box-type section.
Determination of the strength of the wing relative to the strength of the building structure will
require a detailed finite element analysis that we believe has not been performed to date. In order
to retain the needed degree of simplicity, a computational model is developed in which the wing
material is lumped into a single box-type beam. Assuming that this mass is now uniformly
distributed over the whole length of the wing span lw and that the beam is of a thin-walled square
cross-section ð2a � 2aÞ with the thickness heq; the equivalent thickness of the wing beam is found
from the equation

8aheqlwr ¼ 1
4

M; ð1Þ

where the left-hand side represents the mass of the box column and the right-hand side is the
actual mass of the wings. Assuming an average height of the spar 2a ¼ 0:48m and the span of the
aircraft wing lw ¼ 47:57 m; the equivalent thickness becomes heq ¼ 122 mm: The wings are swept
at approximately 201 so that upon impact, external columns are contacted sequentially, one by
one.

2.2. Exterior columns

The 64m (208 ft) wide facade of the WTC Towers is, in effect, a prefabricated steel lattice. The
exterior columns are narrowly spaced and finished with a silver-colored aluminum cladding. The
main building block of the outer structure was a prefabricated element that was comprised of 3
floors, was 10.9m high, and was 3.07m wide, Fig. 2.

The prefabricated panel consisted of three columns connected by 3 transverse plates called
spandrels. The breadth of the columns was b ¼ 356 mm; and they were spaced 1000mm apart
from each other. The segments were staggered and bolted to their neighboring elements in every
direction, Fig. 3. Each column was a box structure, almost square, with the wall thickness varying
from 125mm at the base of the building to 7.5mm at the top. In the present analysis, we assume
the wall thickness to be h ¼ 9:5 mm [15]. There is some degree of uncertainty as to the grade of
steel. We have assumed that the exterior columns were made of A36 high strength steel
characterized by the yield stress sy ¼ 250 MPa; ultimate strength su ¼ 475 MPa; hardening
exponent n ¼ 0:2; and uniaxial fracture strain ef ¼ 0:23 [16]. The effect of stress triaxiality on
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fracture is not considered because of lack of data. A more rigorous material fracture data will
hopefully be available in the near future when test samples will be cut from the exterior columns
to be retrieved from WTC Towers.

The so-called energy equivalent flow stress, calculated from the above values, and using the
power-law approximation of the stress–strain curve, is s0 ¼ 396 MPa: It was also pointed out in
Ref. [15] that the yield stress of the exterior columns also varied in successive steps from 700 MPa
at the bottom of the building to 295 MPa at the top.

In the first approximation, the airplane wings are modeled as a rectangular box beam. On
comparing dimensions of the wing box with the dimension of the exterior columns, it is evident
that the wall thickness of the former is an order of magnitude larger than the wall thickness of the

Fig. 2. Prefabricated lattice of external columns was made of welded high strength steel box sections.

Fig. 3. Two opponents: the outer column and the wing. Note that the drawings are not in scale.
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latter. Therefore, within the present level of accuracy, the wing can be considered a rigid body
with a total mass M0: This statement can be further reinforced by the observation that the fuel in
the wing tanks could make the wings to behave more like rigid bodies. The mass of the portion of
the wing that interacts with one column is obtained by dividing the total mass of the wings by the
number of columns interacting with wings M0 ¼ 30; 000=50 ¼ 600 kg: In reality, the failure
process consists of multiple impacts of various structural elements of the wing into a stationary
structure. A simple computational model of the multiple impact will be the subject of a separate
publication [17].

3. Impact of a rigid mass into a box column

The deformation pattern of a box column hit by a rigid object moving with V0 ¼ 240 m=s is
very localized due to the inertia and involves denting and stretching of the impacted flange and
folding and tearing of the webs. The failure mode without and with fracture option was calculated
by means of ABAQUS/explicit by Zheng and Wierzbicki [18], Fig. 4. At the critical velocity the
fracture initiates. It will be calculated in subsequent sections. On increasing the impact velocity
tensile and/or shear fracture will occur in the flange and will propagate down the web until full
severance of the cross-section takes place. The details of this complex failure process are currently
under investigation using numerical methods and the results are documented in Ref. [18]. For the
purpose of the present analytical treatment, further simplifications are introduced. The box beam
is broken into two flanges and two webs and a separate impact analysis is performed for each type
of structure with the increasing level of complexity, Fig. 5.

First, the top flange is modeled as a long (or infinite) rigid-perfectly plastic beam/string that is
supported by its own inertia. The length of the beam does not come into play because plastic
deformations are localized around the impacted zone and we do not consider the entire range of
impact velocities all the way to quasi-static loading. Clearly, for a statically loaded beam/string
deformations would spread all the way to the support.

Fig. 4. Partially damaged box beam hit by a rigid cube at a speed of 240m/s. Results of ABAQUS/explicit without

fracture (left) and with fracture option (right).
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The impacting mass is assumed to have a flat or circular leading edge. The latter case represents
more realistically the actual shape of the wing. The most complex model involves plastic string
resting on a rigid-plastic foundation. The foundation can be regarded as the resistance of the webs
supporting the flange to the crushing load of the falling mass. In each of the three cases defined
above, the analysis is first carried out without fracture. Then fracture is introduced and the critical
impact velocity for the mass to perforate the beam/string is found. Finally, deformation and
fracture of the rear flange are analyzed.

3.1. Blunt projectile impact into plastic string

Consider the top flange of the box beam and denote by h and b its thickness and width,
respectively. The mass per unit length is m ¼ rhb; where r is the mass density. The material of the
flange is taken to be rigid-perfectly plastic defined by the flow stress s0: The flow stress is
understood as the average value of the plastic stress over the strain path all the way to fracture:

s0 ¼
1

ef

Z ef

0

sðeÞ de; ð2Þ

where ef is the plane strain fracture strain of a thin sheet. For a power-type stress–strain law with
the exponent n; s ¼ suðe=ef Þ

n; the energy equivalent flow stress becomes s0 ¼ su=ð1þ nÞ; where su

is the stress corresponding to the fracture strain. The fully plastic axial force in the cross-section is
defined by N0 ¼ bhs0:

From Fig. 4 one can infer that plastic deformation can be much larger than the plate thickness.
Thus, the theory of moderately large deflections is appropriate with the dominant membrane
action and insignificant bending resistance. But fracture of beams under high velocity impact may
initiate quite early in the process when deflections are not large enough. Can the bending response
also be neglected in this case? The answer to this legitimate question is obtained by comparing the
propagation speed of flexural disturbances in a pure bending and pure membrane theory of
beams. The ‘‘wave’’ speed in the bending theory is understood as a speed of propagating plastic
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Fig. 5. Box beam broken into four components and three different models of the impact scenario.
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hinge that carries information on the sudden mass impact. The solution to this problem has been
worked out by Parkes [19] on an example of a cantilever beam impacted by the mass M0 with the
velocity V0: The normalized velocity of the propagating hinge cb is expressed by

cb

c
¼

3

2

h

x

c

V0

ð1 þ ðx=hÞ bÞ2

ð2 þ ðx=hÞ bÞ
; ð3Þ

where x is the distance from the impacted end to the hinge, b ¼ mh=M0 is the mass ratio, and c is
the reference speed c ¼

ffiffiffiffiffiffiffiffiffiffi
s0=r

p
: For large distances x=h; the bending wave speed reaches a

constant asymptotic value

cN

c
¼

3

2

hm

M0

� �
c

V0
: ð4Þ

At the same time, for small x=h; in the vicinity of the impacting site, Eq. (3) yields

cb

c
¼

3

4

h

x

c

V0
: ð5Þ

The bending wave speed is a rapidly diminishing function of the x-coordinate, Fig. 6.
Additionally, cb depends on the velocity and mass of the impacted body. This study is concerned
with the range of impact velocities V0Ec: It transpires from Eq. (5) that the wave speed of plastic
hinge cb is always smaller than the reference velocity c except for very short distances, less than the
beam thickness. The above conclusion is not generally valid because the speed of the bending
wave is not a constant for a beam but depends on the initial-boundary value problem. From the
above analysis one can conclude that in the present high velocity impact the bending phase is
insignificant.

The equation of motion of the plastic string undergoing moderately large deflection is [13,14]

ðN0w0Þ0 ¼ m .w; ð6Þ

h
x

c
cb

c
c∞

04V
3c

1.0

Fig. 6. Comparison of the wave speed of bending disturbance cb with the speed of the membrane wave c:
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where wðx; tÞ is the transverse deflection and primes and dots denote, respectively, differentiation
with respect to the spatial coordinate x and time t: Therefore, use of the theory of moderately
large deflection is appropriate here. Using the definition of N0 and m introduced earlier, Eq. (6)
takes the form of the wave equation

c2w00 ¼ .w; ð7Þ

where c ¼
ffiffiffiffiffiffiffiffiffiffi
s0=r

p
is the velocity of propagation of transverse plastic wave in the beam taken as

reference velocity in Eq. (3). Depending on the magnitude of the flow stress and mass density, the
wave speed is in the range of cA36 ¼ 224 m= for the A36 steel used in the WTC buildings with
su ¼ 475 MPa and n ¼ 0:2: A similar value for an airplane aluminum structure with s0 ¼
350 MPa and rAl ¼ 2:7 g=cm3 is cAl ¼ 360 m=s: It should be noted that the aircraft impacted the
South Tower at the speed of V0 ¼ 240 m=s which is comparable to the wave speed. The present
theory is applicable to the impact velocity of the order of c: Under these assumptions, the
membrane wave c is always faster than the bending wave cb; which proves general applicability of
the present membrane theory. An order of magnitude higher or lower velocities would generate
different failure modes and must be studied using different methods.

The equation of motion (7) is subjected to the following boundary conditions at the boundaries
x ¼ a and x ¼ x ¼ a þ ct:

ðQ � N0w0Þd ’w ¼ 0; ð8Þ

where 2a is the width of the flat nose mass and Q is the shear force which is equilibrated by the
vertical component of the membrane tension. At the impacted end x ¼ a; each half of the beam is
decelerating the rigid mass so that

N0w0 ¼ 1
2

M0ð1þ mÞ .w at x ¼ a; ð9Þ

w ¼ 0 at x ¼ x ¼ a þ ct; ð10Þ

where

m ¼
2am

M0
: ð11Þ

The impact problem is subjected to the initial condition at t ¼ 0

w ¼ 0 for all x; ð12Þ

’w ¼
V1; xj jpa;

0; xj j > a;

(
ð13Þ

where the new initial velocity, V1; is determined from the balance of linear momentum, as
explained below.

At the instant of impact there is an instantaneous momentum transfer from the impacting mass
M0 moving with velocity V0 to the new mass M0 þ 2am moving with velocity V1: Thus

V1 ¼
M0

M0 þ 2am
V0: ð14Þ

In the case of the Twin Towers M0 ¼ 600 kg; 2a ¼ 480 mm; b ¼ 356 mm; and h ¼ 9:5 mm so that
V1 ¼ 0:98V0 ¼ 235:3 m=s: The drop in the velocity is small. However, in the analysis of multiple
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impact of smaller projectile into beams with comparable masses, Eq. (14) introduces a significant
correction.

The solution to the initial-boundary value problem stated above follows the general procedure
established in Refs. [4,13]. The discontinuity of the initial velocity generates shock waves that
move at the speed c: All plastic deformations are concentrated at the wave front where material
elements suddenly acquire transverse velocity ’wðtÞ: In order to satisfy dynamic continuity

N0w0
 þ mc ’w
 ¼ 0 at x ¼ x; ð15Þ

the deflection slope also suffers a jump at the wave front. Behind the wave front there is only a
rigid body motion with the velocity diminishing in time. Because in the region behind the wave
front .w and ’w are independent of the spatial coordinate x; Eq. (6) can be integrated with respect to
x from aoxox to give

N0w0 x
a

�� � mðx� aÞ .w ¼ 0: ð16Þ

Using the boundary condition, Eq. (9), and the dynamic continuity condition, Eq. (15), the
governing equation for the problem becomes

2cm ’w þ ðM0 þ 2mxÞ .w ¼ 0 ð17Þ

subject to the initial condition. It is interesting to note that Eq. (17) can also be derived in a
straightforward way from the conservation of linear momentum.

d

dt
f½M0 þ 2mx
 ’wg ¼ 0: ð18Þ

Thus, the local equilibrium approach and the global momentum conservation approach yield
identical results provided the same uniform spatial distribution of the velocity profile is assumed.
Integrating Eq. (17) once with respect to time and using the initial condition for velocities,
Eq. (14), one gets

’w ¼
V1

1þ m=ð1þ mÞ tc=a
: ð19Þ

A plot of spatial and temporal variation of the velocity field is shown in Fig. 7. The rate of the
velocity drop depends strongly on the mass parameter m:

The transverse displacement can be obtained by integrating the velocity field with respect to
time

w x; tð Þ ¼
Z t

t1¼ðx�aÞ=c

’w tð Þdt: ð20Þ

The presence of the non-zero lower limit in the above integral means that the beam acquires a
displacement at point x only after the wave front arrives at that location at time t1 ¼ ðx � aÞ=c:
Substituting Eq. (19) into Eq. (20) and using Eq. (13), the transverse displacement becomes

wðx; tÞ ¼
1 þ m
m

a
V1

c
ln

1þ m=ð1þ mÞ tc=a

1 þ m=ð1þ mÞ ðx � aÞ=a
; ð21Þ

where the mass ratio m is defined by Eq. (11).
The variation of the normalized deformed shape of the beam with time for two values of the

mass ratio is depicted in Fig. 8. It can be seen that the slope is always maximum at x ¼ a: The
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maximum slope, obtained by differentiating Eq. (21) with respect to x; is

w0
x¼aj ¼ �

V1

c
ð22Þ

and is independent of time. We are now in the position to predict the onset of fracture of the
flange upon impact loading. The membrane strain in the axial direction is defined by

e ¼ 1
2
ðw0Þ2: ð23Þ

It is assumed that fracture initiates when the maximum principal strain attains the plane strain
necking strain in the flange ef ; emax ¼ ef : Combining Eqs. (22) and (23), the critical velocity to
fracture becomes

V0ð Þcr¼ ð1þ mÞc
ffiffiffiffiffiffi
2ef

p
¼ ð1þ mÞ

ffiffiffiffiffiffiffiffiffiffiffi
2s0ef
r

s
: ð24Þ

w 

0V

x

2a

c c

.

Fig. 7. Spatial and temporal variation of the transverse velocity of the flange.
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It is seen that ðV0Þcr depends on the mechanical properties of the material ðs0; ef ; rÞ and the mass
ratio. Taking for example ef ¼ 0:23 for A36 steel as determined in Ref. [16], the critical impact
speed to fracture the top flange of the exterior column is ðV0Þcr ¼ 0:69cA36 ¼ 155 m=s: It can be
concluded that the wing of the Boeing 767 traveling at V0 ¼ 240 m=s will immediately cut through
the flange of the exterior column. It should be mentioned that the present method has previously
led to a closed-form solution of the projectile impact into thin plates, [13], which correlated well
with the experimental results due to Calder and Goldsmith [20].

3.2. Round projectile impact into plastic string

Let us assume that the impacting mass is a cylinder with the radius R: The transfer of
momentum from the impacting mass to the flange occurs now over finite time as the string wraps
around the circular shape projectiles. From Fig. 9 the axial coordinate of point A at which the
mass loses contact with the flange and its velocity are given by

x ¼ R sin a; ð25Þ

’x ¼ ’aR cos a: ð26Þ

Fig. 8. Transient deflection profiles of the flange for the values of the mass ratio m: Note a rigid body shift of the

deformed portion.
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The vertical displacement and velocity are

w ¼ Rð1 � cos aÞ; ð27Þ

’w ¼ ’aR sin a: ð28Þ

Eliminating ’a between Eqs. (26) and (28), the propagation velocity of contact point A is

’x ¼
’wðtÞ

tan a
: ð29Þ

Initially ’wð0Þ ¼ V0 and a ¼ 0: Therefore, ’xðaÞ-N and point A travels at a ‘‘supersonic’’ velocity
’x > c: This means that no information on the deformation can propagate ahead of the contact
point and the flange must wrap up around the lateral surface of the cylinder. This phase lasts until
the speed ’x becomes equal to c or fracture occurs first.

The time change of the downward velocity is obtained from the conservation of linear
momentum

ðM0 þ 2xmÞ ’w ¼ M0V0; ð30Þ

’wðaÞ
V0

¼
M0

M0 þ 2mx
¼

1

1 þ m sin a
: ð31Þ

The above solution is valid until the velocity ’x reaches a sonic value c which gives ’wðtÞ ¼ c tan a
or using Eq. (23) fracture takes place at af ¼ tan�1

ffiffiffiffiffiffi
2ef

p
: Two typical situations may occur as

illustrated in Fig. 10.
At a larger value of the parameter m; the solution intersects the line ’w ¼ c tan aEca before

fracture occurs. The first phase of the motion terminates at a ¼ a1; defined by the solution of the
following quadratic equation:

c tan a1 ¼
V0

1 þ m sin a1
: ð32Þ

If the beam does not break in the supersonic phase, the waves will propagate ahead of the
contact point. In the subsonic phase, the transverse velocity can also be obtained from the

R

ξ

α

O

A

V

0w

,0M

ξ'

Fig. 9. Wrapping of the flange around the impacting cylinder in the initial supersonic phase of motion.
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momentum conservation by assuming the uniform distribution in space,

’w

V0
¼

M0

M0 þ 2mR sin aþ 2mcðt � t1Þ
¼

1

1þ m sin aþ mcðt � t1Þ=R
; ð33Þ

where the waves begin to propagate ahead of the contact point at t ¼ t1 ¼ R sin a1=c: The
deflection of the beam ahead of the contact point is given by

w ¼
Z t

ðx�R sin aÞ=cþt1

’w dt: ð34Þ

Substituting the expression for the velocity, one obtains the deflection of the beam by integrating
the above equation

w

R
¼

1

m
V0

c
ln

1þ m sin aþ mðcðt � t1ÞÞ=R

1þ mðx=RÞ
: ð35Þ

Instantaneous deflection profiles calculated from Eq. (35) are shown in Fig. 11.
By differentiating the deflection of the beam with respect to the spatial coordinate x; one arrives

at the expression for the tensile strain

e ¼
1

2

V0

c

� �2
1

1þ mðx=RÞ

� �2

;
x

R
Xsin a: ð36Þ

It can be observed from the above equation that tensile strain in the beam ahead of the contact
point decreases with distance from the contact point. The tensile strain in the wrapped part

Fig. 10. Solution in the supersonic range is bounded by fracture angle af or by the boundary with the subsonic region,

whichever occurs first.
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around the circular projectile can be expressed as

e ¼
1

2

x

R

	 
2

; 0p
x

R
psin a: ð37Þ

Plots of the tensile strain variation along the beam for different mass ratios are show in Fig. 12.
It can be seen that smaller mass ratios give larger tensile strain. Or say, it is more likely that the
beam will fracture in the case of the projectiles with small impact masses and high impact velocity.
Also, the maximum tensile strains always occur at the contact point. Hence, it can be concluded
that if the beam does not break in the supersonic phase, it will not break at all.

Because the maximum tensile strains always occur at the contact point, the critical impact
velocity can be defined by setting the tensile strain in the contact point equal to the fracture strain,
that is, let a1 in Eq. (32) be equal to af ;

ðV0Þcr
c

¼ 1þ m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ef

1þ 2ef

r� � ffiffiffiffiffiffi
2ef

p
: ð38Þ

Fig. 11. Transient deflection profiles of the flange under impact of a circular projectile ðm ¼ 0:5Þ:

Fig. 12. Tensile strain versus spatial coordinate for different mass ratios.
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In summary, if the impact velocity is smaller than the critical velocity, the beam will never
fracture, and the wave will propagate ahead of the contact point. If, on the other hand, the impact
velocity is larger than the critical velocity, the beam will fracture in the supersonic phase. On
comparing Eqs. (24) and (38), one can observe that the critical impact velocity in the case of the
circular projectile is smaller than that of the blunt projectile.

For example, in the case of the wing impact to exterior column, the critical impact velocity to
fracture the flange of the exterior is ðV0Þcr ¼ 0:68cA36 ¼ 154 m=s; which is only 1 m=s lower than
that in the case of the blunt projectile. Hence, the same conclusion can be drawn that the wing of
the Boeing 767 modeled as a rounded-off structure traveling at V0 ¼ 240 m=s will cut through the
flange of the exterior column.

3.3. Response of a flange on foundation

We return now to the original box columns which is composed of the top flange, two webs and
the bottom flange, Fig. 5. The problem is modeled as one with multiple impact. First the wings hit
the top flange and the common velocity after impact is given by Eq. (14). Next, the new mass
ðM0 þ 2maÞ is colliding with two webs. Following Zhang and Yu [21], there will be an
instantaneous momentum transfer between ðM0 þ 2maÞ and the new total mass of ðM0 þ 6maÞ;
Fig. 13. Thus, the velocity after the second impact is

V�
2 ¼

M0 þ 2ma

M0 þ 6ma
V1: ð39Þ

Thus, after the second impact the velocity of the colliding mass, now traveling with the top flange
and two webs, is

V�
2 ¼

M0

M0 þ 6am
V0 ¼

1

1 þ 3m
V0 ¼ 0:94V0 ¼ 225:6 m=s: ð40Þ

Tam and Calladine [22] developed a modified theory where the momentum transfer proceeds in a
more gradual way. The case of a gradual momentum transfer is described next.

The question is to what extent the presence of the web modifies the onset of fracture of the
flange. Right after the impact the two walls offer a full compressive resistance q ¼ 2hs0 (per unit
length). Later on the web plates will buckle plastically and fold developing a complex bi-axial
stress state but we are interested in the initial response. As shown in Fig. 14, the box column

Fig. 13. Elements of the box beam participating in the initial momentum transfer (shaded area).
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can now be modeled as a string on plastic foundation that is described by the inhomogeneous
wave equation

c2w00 ¼ .w þ
2c2

b
ð41Þ

subject to the same boundary and initial condition.
The solution method to this problem was developed by Hoo Fatt and Wierzbicki [13]. In the

present notation, the velocity function is given by

’wðtÞ ¼
ð1 þ mÞV1 � ð2qa2=M0cÞðtc=aÞ � ðqa2=M0cÞðtc=aÞ2

ð1 þ mÞ þ mðtc=aÞ
: ð42Þ

Integrating Eq. (38) in time, according to Eq. (20), one can get the expression for the
displacement, slopes, and maximum slope. In particular, the maximum slope occurs as before
at x ¼ a and is given by

ðw0Þmax ¼ �
V1

c
ð43Þ

that is independent of the foundation constant q: The independence of the maximum slope and
thus fracture on the foundation constant is very significant because of the uncertainty in choosing
the right value for the foundation constant.

3.4. Tearing of the webs

The instantaneous fracture of the flange initiates the process of tearing of the webs. The fracture
process is assumed to follow the pattern of the so-called ‘‘concertina tearing’’ initially developed
for quasi-static loading [23,24]. The process involves two diverging cracks emanating from the
initial cut that runs at approximately y ¼ 141 from the vertical direction, Fig. 15. The plate
between the cracks folds back and forth with a relatively short wavelength. A limited numerical

0V

q
0N0N

0M

w

x

,

2a

h

cc

Fig. 14. Notation used in the string model on plastic foundation.
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simulation performed by Zheng and Wierzbicki [18] confirms that this type of folding is observed
under high velocity impact (see Fig. 4).

Therefore, it is reasonable to assume that the local lateral inertia of the folding webs will not
alter the expression for the total resisting force. From Ref. [23] the force necessary to fold and tear
one plate with two diverging cracks is

F ¼ 3s0ð2aÞ1=3h5=3; ð44Þ

which for the present numerical example yields the value F ¼ 0:396 MN: Now considering that
the momentum transfer occurs in a gradual way, the equation of motion is

2F ¼ �
d

dt
M0 þ 2ma þ 4ma

w

b

	 

’w

h i
ð45Þ

with zero initial conditions for displacement and the initial velocity V1 ¼ 0:98V0: The solution of
the above equation is

’w ¼
2Ft þ ðM0 þ 2maÞV1

M0 þ 2ma þ 4maðw=bÞ
: ð46Þ

The above differential equation can be integrated through the separation of variable and the
displacement of the impacting mass in contact with the web is given by

2ma
w2

b
þ M0 þ 2mað Þw ¼ Ft2 þ M0 þ 2mað ÞV1t; ð47Þ

where the initial condition was used, w ¼ 0 at t ¼ 0: The above equation is also a quadratic
equation with respect to time t: The final tearing time tf can be determined by setting w ¼ b in
Eq. (47):

tf ¼
�ðM0 þ 2maÞV1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðM0 þ 2maÞV1
2 þ 4F ðM0 þ 4maÞb

p
2F

: ð48Þ

Fig. 15. Webs are assumed to fail in the concertina tearing mode with diverging cracks. Shown in the photo are the

results for a much thinner plate. The WTC Tower columns will develop just fewer folds (see Fig. 4).
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Substituting the expression for tf and setting w ¼ b in Eq. (46), one arrives at the velocity V2 at the
end of the tearing phase

V2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðM0 þ 2maÞV1
2 þ 4F ðM0 þ 4maÞb

p
M0 þ 6ma

: ð49Þ

Note that in the limiting case of zero shear force, F ¼ 0; Eq. (49) reduces to the previous result
which is based on the method of instantaneous momentum transfer, Eq. (39). The velocity ratio
between the gradual moment transfer solution and the instantaneous moment transfer solution is
given by

V2

V�
2

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

2Fb
1
2

M0V2
0

ð1þ 2mÞ

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

Etear

E0
1þ 2mð Þ

r
; ð50Þ

where Etear ¼ 2Fb is the tearing work of the webs; and E0 ¼ 1
2 M0V2

0 is the initial kinetic energy of
the impacting mass. Plots of the ratio of V2 to V�

2 versus the energy ratio of Etear to E0 for
different mass ratios m are given in Fig. 16.

For small values of the parameter, Etear=E0; Eq. (50) can be approximated by using Taylor
series expansion:

V2

V�
2

E1 þ
1

2

Etear

E0
ð1 þ 2mÞ: ð51Þ

Using the data of the particular example, the energy ratio is Etear=E0 ¼ 0:28=17:28 ¼ 0:016; and
the mass ratio is m ¼ 0:02; the velocity at the end of the tearing phase is V2 ¼ 1:008 V�

2 ¼
227:4 m=s; which is almost the same as the velocity obtained by the method of instantaneous
momentum transfer. This indicates that the tearing resistance does not affect much the

Fig. 16. Ratio of the velocity at the end of the tearing phase versus energy ratio for different mass ratios.
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momentum transfer. However, it should be mentioned that in the case with large mass ratio, the
difference between the velocity V2 and V�

2 could be significant. With the velocity V2 we are
entering the final stage of the failure process which is fracture of the rear flange.

3.5. Fracture of the rear flange

Failure of the back flange is quite complex and involves at least two distinct phases. The crack
in the diverging concertina mode turns at 90o after reaching the lower edge of the box column.
After that the out-of-plane shearing cracks are formed and propagate some distance towards each
other, Fig. 17. At the same time two segments of the back flange are subjected to a combined
shear and tension and finally the remaining ligament necks and fractures on reaching the fracture
strain. The above failure sequence was confirmed by a finite element solution of the exterior
column, shown in Fig. 18 [18].

The failure mechanism of the rear flange is thus different from that of the top flange. For both
the cases, the energy dissipated to break the flange is small compared to the energy lost during the
momentum transfer (only 4.3%) [25]. Therefore, the momentum conservation alone can be used

Fig. 17. Initial phase of failure of the rear flange with the out-of-plane (Mode III) fracture.

Fig. 18. Finite element simulation showing a combined Mode I/Mode III fracture pattern.
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to determine the final (exit) velocity of the impacting mass

V3 ¼
M0 þ 6ma

M0 þ 8ma
V2 ¼ 223:2 m=s ð52Þ

It is not clear where the energy lost in the momentum transfer goes into. Clearly, there must be a
complex system of incident and reflected plastic waves through the thickness accompanied by a
plastic flow and change in the wall thickness.

3.6. Energy dissipation

The initial kinetic energy of the portion of the wing impacting one exterior column is

E0 ¼ 1
2

M0V2
0 ¼ 17:28 MJ: ð53Þ

(Note that this is only 0.5% of the total kinetic energy of the entire plane.) The energy dissipated
in the failure of the impacted top flange, two webs and bottom flange can be calculated from the
known drop of the mass velocity during the momentum transfer:

DEtop flange ¼ 1
2

M0V2
0 � 1

2
ðM0 þ 2maÞV2

1 ¼ 0:352 MJ; ð54Þ

DEweb ¼ 1
2
ðM0 þ 2maÞV2

1 � 1
2
ðM0 þ 6maÞV2

2 ¼ 0:484 MJ; ð55Þ

DEbottom flange ¼ 1
2ðM0 þ 6maÞV2

2 � 1
2ðM0 þ 8maÞV2

3 ¼ 0:303 MJ: ð56Þ

Note that in the process of concertina tearing of the webs energy dissipated has been included in
Eq. (55). The above fractional energies give a total loss of kinetic energy

DEtotal ¼ DEtop flange þ DEweb þ DEbottom flange ¼ 1:139 MJ; ð57Þ

which is illustrated in a graphical form in Fig. 19. This represents approximately 6.7% of the
initial kinetic energy of the relevant portion of the wing. The present detailed analysis of the
failure process confirmed in general terms previous estimates on the energy needed to cut through
the exterior columns based on a simple plastic shear model [1]. Finally, the predicted wing velocity
versus the travel time is shown in Fig. 20, and compared to the finite element results obtained in
Ref. [18]. The correlation is good considering the simplicity of the closed-form solution.

The agreement of the present closed-form solution and ABAQUS calculation is perfect in the
phase of cutting through the flange and web up to the time of 1.6ms. The error in the third phase
is explained by observing that the rear flange does not fracture instantaneously by shear but it is
dragged for a long time and failed by a combination of the out-of-plane shear and tension. The
initial impact velocity 240m/s drops to the exit value of 223.2m/s and this will be the entry
velocity that will subsequently damage the floors and core structure of the Twin Towers.

The final conclusion of the present calculation is that the exterior column, despite its mighty
appearance, dissipated only 6.7% of the initial kinetic energy of the relevant portion of the wing.
This means that the remaining 93.3% of the energy was then used to damage the interior of the
Twin Towers, i.e., floors and the core structure.
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4. Conclusions

In this paper, we have analyzed the sequential failure of a typical exterior column of the World
Trade Center Towers subjected to the impact of the airplane wing traveling at 240m/s. It was
found that the fracture process started immediately and continued as plate tearing on the side
webs to be completed as tensile/shear fracture on the rear flange. In each stage, the resisting forces
arising from plastic deformation and fracture were calculated and the time history of the velocity
of the impacting wing section was determined.

Fig. 20. Variation of the wing velocity as a function of the cutting time.

Fig. 19. Fractional energy loss for the top flange, two webs, and bottom flange, respectively.

T. Wierzbicki, X. Teng / International Journal of Impact Engineering 28 (2003) 601–625 623



The minimum impact velocity to cause fracture was determined from Eq. (24) to be 155m/s.
Should the aircraft be traveling not at a cruising speed but at a much lower take-off or landing
speed of 200mph (about 100m/s), then the exterior columns would appear to have deflected the
wings without fracture.

It is concluded that the process of wing cutting through the exterior columns dissipated only
1.139MJ of energy. This constitutes only 6.7% of the initial kinetic energy of the wing. The
remaining 93.3% of the kinetic energy was then transferred into the interior of the building
causing fatal damage to the floors and core structure. The present analysis introduced a
substantial correction to the earlier estimate of the energy required to shear the column reported
in Ref. [1] but in each case the energy to break the airplane wing through the exterior facade of the
Twin Towers is insignificant.

The present analysis also suggested that the exterior column would be able to stop the airplane
wing or at least prevent a local shear failure if the average flow stress of the material is increased
by a factor of two. Thus, had the plane hit the base of the Towers which were made of high
strength steel with the yield stress of sy ¼ 700 MPa; the airplane might have been deflected by the
exterior walls.

All of the above conclusions must be treated as tentative because the actual wing was composed
of several much thinner members and not one thick beam. Also the effect of the fluid inside the
fuel tanks that are placed within the wing boxes is not considered. The analysis of a multiple
impact of two hollow beams of a similar strength will be presented in a separate publication [17].
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