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Abstract: Radar automatic target recognition (RATR) technology is fundamental but complicated
system engineering that combines sensor, target, environment, and signal processing technology, etc.
It plays a significant role in improving the level and capabilities of military and civilian automation.
Although RATR has been successfully applied in some aspects, the complete theoretical system
has not been established. At present, deep learning algorithms have received a lot of attention
and have emerged as potential and feasible solutions in RATR. This paper mainly reviews related
articles published between 2010 and 2022, which corresponds to the period when deep learning
methods were introduced into RATR research. In this paper, the current research status of radar
target characteristics is summarized, including motion, micro-motion, one-dimensional, and two-
dimensional characteristics, etc. This paper reviews the progress of deep learning methods in the
feature extraction and recognition of radar target characteristics in recent years, including space, air,
ground, sea-surface targets, etc. Due to more and more attention and research results published in
the past few years, it is hoped that this review can provide potential guidance for future research and
application of deep learning in fields related to RATR.

Keywords: radar automatic target recognition; radar target characteristics; deep learning; artificial
intelligence; radar signal processing

1. Introduction

Due to the rapid development of devices and the great progress of radar signal
processing and data processing technology, the function of radars has been developed
from the traditional single-scale information measurement to the fine feature information
measurement, so as to provide more abundant feature information for radar automatic
target recognition (RATR) [1,2]. RATR technology extracts the stable target characteristics
from the radar echo signal and then further discriminates the target attribute or category [3].
Currently, this technology involves the field of the recognition of space, air, ground, and sea-
surface targets, etc., which plays a significant role in improving the command automation
level, attack and defense capability, territorial air defense, and early-warning capability
and will become an inevitable and indispensable function for the next generation of radar
systems [4].

The research of radar target characteristics is the foundation and a crucial part of
RATR, which mainly refer to the electromagnetic scattering characteristics of the observed
target under electromagnetic wave irradiation. The common radar target characteristics
highlight the great significance of signals for radar target recognition, such as micro-Doppler
spectrums [5], high-resolution range profiles (HRRPs) [6], synthetic aperture radar (SAR)
images [7,8], and inverse synthetic aperture radar (ISAR) images [9]. According to the
characteristics of different radar data, relevant algorithms based on machine learning, such
as support vector machine (SVM) [10], K-Nearest Neighbors (KNN) [11], and statistical
recognition [12] have been used for RATR. Theoretical research mainly focuses on target
fine feature analysis and the application of advanced machine learning algorithms in RATR.
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However, with the rapid progress and application of target control technology and
false target digital synthesis technology, various false targets and decoys have been able to
accurately imitate the real target’s trajectory, radar cross section (RCS), geometric structure,
surface material, and other features [13]. RATR based on traditional feature information,
especially diverse non-cooperative target recognition, has become difficult or even ineffec-
tive. In addition, due to the complex electromagnetic environment with multiple jamming
and noise signals, it is an extremely challenging task to recognize targets in a complex
environment, and therefore, developing robust and reliable RATR algorithms is of great
significance [14]. Moreover, classical features are mostly applicable to specific scenarios; in
unknown scenarios, the optimal feature vector is difficult to determine, which will lead to
the weak generalization of the recognition system [15].

As a branch of machine learning, deep learning technology utilizes statistics to create
mathematical models describing the relationship between inputs and outputs and to
automatically extract features from large-scale raw data [16]. The next generation of
advanced radar systems will be equipped with deep learning technology, so as to identify
targets and make the correct decisions [17,18]. An increasing number of deep neural
networks have been successfully applied to RATR, such as deep belief networks (DBNs),
convolutional neural networks (CNNs), and recursive neural networks (RNNs) [19–22],
which can learn features automatically instead of using a complex feature extraction process.
Jokanovic et al. [23] introduced a fall detection and recognition method based on deep
learning using range-Doppler radars. In [24], a radar target recognition method based on an
RNN was proposed using micro-Doppler signatures as the input. Kim et al. [25] discussed
a human activity recognition algorithm based on micro-Dopplers utilizing a CNN. Fu
et al. [26] designed a maritime ship target recognition algorithm with deep learning. The
application of deep-learning-based methods in RATR is presented in Figure 1.
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Although deep learning technology has been widely applied to some aspects of RATR,
the complete theoretical system of RATR has not been established. In addition, due to the
diversity of radar systems, target types, and the extreme complexity of the environment,
existing RATR systems are still functionally limited. In fact, most research on intelligent
RATR is still in the theoretical stage. In summary, the latest advances in RATR study include
(1) the research progress of the radar target characteristics and mechanism, mainly the
electromagnetic scattering characteristics of targets, and (2) the progress of radar target
characteristic acquisition technology, modern signal processing technology, and artificial
intelligence technology which are widely used in target recognition, which provides a new
solution for RATR.

Most of the existing research on RATR focuses on a special technology, but related
review research is rare. Due to the limited target recognition methods, the early research
and investigation mainly focus on the description of some recognition techniques or simply
list the target recognition methods. With the rapid development of RATR and deep learning
techniques, increasing systematic recognition methods have emerged with high recognition
performance. This paper reviews the radar target characterizations and applications of deep-
learning-based methods in RATR, discusses several kinds of radar target characteristics, as
well as different deep learning frameworks for radar target recognition that are successful
in theoretical research and application, and analyzes the possible solutions to the problem
and the potential limitations in this field.

This paper mainly reviews articles in IEEExplore, IET, Springer Link, Elsevier, MDPI,
and other online databases. Recent articles presented in the leading journals and inter-
national conferences of radar signal processing or artificial intelligence are highlighted.
Most of them were published between 2010 and 2022, which coincides with the period
when deep learning techniques were introduced into RATR research, and these articles
represented a wide range of (1) methods from the theoretical research of radar target char-
acteristics to the application research of RATR, (2) recognition targets from space targets to
human activity, (3) deep learning networks for RATR, (4) data forms from radar signals to
two-dimensional (2D) images, and (5) method improvements from algorithm optimization
to real application.

The rest of this paper is organized as follows: In Section 2, related work on radar target
characteristics is introduced. In Section 3, recent RATR approaches based on deep learning
are reviewed and discussed. Section 4 describes some of the related open datasets for
RATR, and the potential challenges and research opportunities are summarized in Section 5.
Finally, conclusions are presented in Section 6.

2. Related Work on RATR
2.1. Radar Target Characteristics

The research of radar target characteristics is the most basic and crucial step of RATR.
The main research directions of RATR are low-resolution target characteristics based on nar-
rowband radar and high-resolution target recognition based on wideband radars. Because
the wideband and the narrowband information of the target are highly complementary, it
is of great benefit to adopt the multi-feature information of the radar simultaneously.

2.1.1. Narrowband Target Characteristics of Low-Resolution Radar

Although target recognition based on high-resolution radars is the main development
trend at present, the role of narrowband radars cannot be ignored. Compared with wide-
band RATR, narrowband radars also have some advantages: they require fewer resources
for signal processing, and their real-time performance is better than that of wideband
radars under the condition of limited signal resources. Narrowband radars are low-cost
and can make use of the narrowband features of targets for rough classification and auxil-
iary classification, providing prior information, so as to obtain more detailed target features.
According to recent research status, the target characteristics of low-resolution narrowband
radars can be divided into roughly six aspects as follows.
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(1) Motion characteristics

The kinematic parameters of the target, such as the trajectory, speed, maneuverability,
and spatial coordinate information of the target, reveal the changing characteristics of the
different spatial positions and motion states of the target over time, which can effectively
represent the target motion performance and have a certain ability to distinguish different
targets [27]. Different types of flight targets, such as propeller planes, helicopters, and
fighter jets show different motion characteristics, such as motion trajectory, flight altitude,
cruising speed, acceleration performance, climb rate, etc. By using the target motion
characteristics data, the “rough” discrimination of the target type can be realized.

(2) Echo characteristics

The global information of the target such as size can be reflected in the narrowband
waveform to some extent, and the features extracted based on the narrowband echo can
be used for the “rough” classification of target type or number. The amplitude and phase
of radar echo signals can reflect the comprehensive information of the target, and the
frequency, time width, bandwidth, and signal form of the echo reflect the type of radiation
source [28].

For air targets, which can be regarded as point targets for low-resolution radars, the
amplitude and phase of the target echo will vary with the relative attitude of the target to
the radar during its movement. According to the changing process of the echo amplitude
and phase, the shape of the target can be determined, and the movement of the target can
be further determined by analyzing complex information [29].

(3) RCS characteristics

Early research on radar target characteristics focuses on the RCS of the target. The
statistical characteristics of the RCS can reflect the backscattering ability of the target to
a certain degree, which is related to the size, shape, and material of the target and the
frequency band of the radar [30]. Generally, the position, dispersion, distribution, and
transformation features are extracted from the RCS sequence.

RCSs with different times, frequencies, polarization, and angles contain different
target information [31]. For instance, the attitudes of space targets moving along the
orbit change constantly with respect to the radar’s line of sight (LOS), and the RCS value
changing with the LOS is obtained, in which the change rule will reflect the physical
and structural characteristics of targets. The RCS characteristics of the target that can be
extracted mainly include the RCS sequence, RCS mean value, variance, extreme value,
and statistical distribution, which can be used for “rough” size differentiation and attitude
stability discrimination.

(4) Modulation spectrum characteristics

The periodic motion of dynamic targets, such as the propellers of aircraft, the rotating
blades of jet engines, the rotors of helicopters, and other rotating parts, will produce periodic
modulation of the radar echo. The periodic modulation spectrum of different targets varies
greatly, so taking full advantage of this property is beneficial to target recognition. The
motion modulation characteristics of the rotating component have nothing to do with the
attitude of the target and the working state of the radar, which are stable characteristics
for recognition. Bell et al. [32] analyzed the phenomenon of jet engine modulation (JEM)
in detail and established corresponding mathematical models, which lays a theoretical
foundation for RATR using JEM features.

The micro-motions caused by the local motion of the target can be studied in two
ways, namely micro-RCS and micro-Doppler. Among them, the micro-RCS indicates
micro-motion characteristics through changes in the RCS, while micro-Doppler indicates
micro-motion characteristics through changes in Doppler frequency. Victor Chen has made
outstanding contributions to the micro-Doppler characteristics of radars and defined the
concept of micro-Doppler occurring on the target or any structural components on the
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target under micro-motion dynamics for the first time [33]. He introduced the micro-
Doppler phenomenon from Lidar to microwave radars and further constructed the micro-
Doppler model which was induced by the rotation motion of the target and micro-Doppler
modulations on the radar echo signals. For simple micro-motions such as rotation, its
motion form in the direction of the radar LOS is simple harmonic motion, and the micro-
Doppler frequency under ideal conditions can be modeled as (1):

fm−D(t) =
2
λ
[ω × r(t)]T · n =

2A0ω0

λ
cos(ω0t + ϕ0) (1)

where λ represents the wavelength of the radar transmitting signal, ω is the rotating
angular velocity vector, r(t) represents the rotation radius vector at time t, n represents the
direction of the LOS, A0 is the radial micro-motion amplitude, ω0 is the target micro-motion
frequency, and ϕ0 represents the initial phase of simple harmonic motion.

(5) Target pole distribution characteristics

The natural resonant frequency of the target is known as the target poles; the “pole”
and “scattering center” are the basic concepts established in the resonant region and optical
region, respectively. The target pole distribution is only determined by the target shape
or structure and inherent characteristics and has nothing to do with the radar observation
direction (target attitude) and the radar polarization mode, which brings great convenience
to target recognition.

The concept of target poles emerged in 1971. In 1975, Blarium et al. [34] first proposed
the Prony method to extract target poles directly from a series of transient response time-
domain data, which can be adopted as target features for recognition. Since the 1980s, the
research of target poles mainly focuses on how to increase the anti-noise ability and estima-
tion accuracy of the algorithm itself [35,36]. In order to avoid extracting pole distribution
information directly from noisy target scattering data, the target recognition method based
on waveform synthesis technology has been widely considered [37].

(6) Target polarization characteristics

Polarization characteristics are some of the basic properties of radar target scattering,
which describes the vector characteristics of an electromagnetic wave. The polarization
characteristic is closely related to the shape of the target. Any target has a specific polariza-
tion transformation effect on the irradiated electromagnetic wave, and the transformation
relationship is decided by the shape, structure, size, and orientation of the target. In addi-
tion, the variable polarization responses of different targets to various polarized waves can
be measured to form a feature space, which can be used to identify targets.

Many methods of target recognition using polarization information have appeared in
the past twenty years. Cameron et al. [38] used the polarization scattering matrix to recog-
nize targets with relatively simple structures. Chamberlain et al. [39] combined polarization
information with impulse response and proposed target transient polarization response
for target recognition. In addition, the polarization reconstruction of target shape and
combination with imaging technology [40] are also common target recognition methods.

2.1.2. Wideband Target Characteristics of High-Resolution Radar

High-resolution wideband radars can provide fine structural information which is
helpful for target recognition. Generally, the characteristics of the target that can be used
for recognition include high-resolution one-dimensional images (HRRPs), 2D images (e.g.,
ISAR and SAR), and various image sequences.

(1) HRRP characteristics

The HRRP of a target is one of the important characteristics of RATR, which is the
coherent summation of complex echoes of the target scattering centers in each range unit,
reflecting the distribution of strong scatters in the direction of the radar LOS. The illustration
of an HRRP is shown in Figure 2. It has a close correspondence with the actual shape of the
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target, which can be used as the basis for RATR. At the same time, the target micro-motion,
such as precession, nutation, and roll, will also cause the projection of each scattering
center position on the radar LOS to change, resulting in the target HRRP sequence changes
according to a certain rule [41]. Therefore, the size features, micro-motion features, and
shape features of the target can be extracted from the HRRP for target recognition. Generally,
the higher the bandwidth, the finer the features of the target will be reflected. Compared
with ISAR and SAR images, HRRPs are easier to obtain and more efficient to process.
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Figure 2. Illustration of the HRRP of a plane target.

It is generally believed that an HRRP can be obtained by the matched filtering process-
ing of the radar echo signal. Assuming that the length of the echo signal is Nk, the HRRP
can be expressed discretely as (2):

xr(nk) = x(nk)
H ∗ (H(nk) ∗ x(nk))

=
L
∑

l=1

Tpal
2 sinc[ Tpb

2 (nk − τl)] exp(−j2π fdnk), nk = 1, 2, . . . , Nk
(2)

where x(nk)
H represents the conjugate transpose of the echo signal, H(nk) is the response

function, Tp represents pulse width, al represents the amplitude of the lth scattering point,
b represents the slope of frequency modulation, τl is the time delay of the lth scattering
point, and fd is the Doppler frequency.

HRRPs are sensitive to the aspect angle, the distance of the target in space, and the
gain of the radar receiver. Therefore, in the process of target recognition, it is necessary to
consider the sensitivity of the amplitude scale, target aspect, and time shift of the HRRP.
Generally, in order to obtain stable features, the sensitivity of the amplitude scale can be
treated by normalizing the amplitude. The sensitivity of the target aspect can be reduced to
some extent by incoherent or coherent averaging methods. As for the time-shift sensitivity,
Li et al. [42] discussed a sliding correlation matching method based on the HRRP as the
feature for target recognition, so the recognition results were not affected by the time shift.

Extracting low-dimensional and high-divisible features that can represent the essential
characteristics of targets from the HRRP can not only reduce the dimensionality of high-
dimensional HRRP data, thus reducing the storage requirements of the algorithm, but
can also increase the accuracy and speed of the target recognition algorithm. In addition
to the common Fourier transform, bispectrum transform, and other methods, various
transformation solutions have been adopted to reduce the dimension of the HRRP to obtain
features with good intra-class aggregation and strong inter-class separability [43].

(2) SAR and ISAR image characteristics

Compared with one-dimensional images, 2D images of high-resolution radars (e.g.,
SAR and ISAR) contain more information about the shape and structure of targets and are
therefore more beneficial to target recognition.
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By using the relative motion of the radar and target, SARs synthesize several smaller
real antenna apertures into radars with equivalent antenna apertures by means of data
processing. They have high-resolution, all-day, all-weather, and large-width characteristics,
which can effectively identify camouflage and penetrate coverings, and have high applica-
tion value in both military and civilian fields. They can generate 2D images in the range
and azimuth, which can reflect not only the electromagnetic and geometric characteristics
but also the backscattering intensity of the electromagnetic wave. Consequently, image
recognition technology can be used for SAR-ATR, which is the most intuitive method in
the field of target recognition, but how to obtain high-quality 2D images of the target is the
first problem to be solved.

Due to the scattering mechanism and speckle noises in SAR imagery, it is not as
straightforward as in optical images whose edges are easy to detect. In SAR-ATR technology,
target image features that are widely used include a target peak feature, shadow feature,
wavelet low-frequency feature, and scattering center feature [44]. In addition, due to the
similarity between SAR images and optical images, texture features can also be used for
target recognition. Texture is the variation and repetition of the image gray level in space.
Texture, color, shape, and other features are all low-level visual features. The semantic
feature is a more abstract high-level feature representation formed by the combination of
low-level texture features, including scene semantic features, behavior semantic features,
emotion semantic features in images, etc. Many features for target recognition have been
developed, such as the gray-level co-occurrence matrix [45], which is considered to be the
best classification algorithm in traditional texture statistical analysis. In addition, scale-
invariant feature transform [46] and histograms of oriented gradients [47] are traditional
methods to generate image feature descriptions.

The ISAR imaging of moving targets in the range-Doppler domain is usually repre-
sented by the sparse distribution of scattering centers. Because the target is non-cooperative,
the translation component can easily cause range ambiguity, while the micro-motion com-
ponent can easily lead to azimuth ambiguity. In addition, the special characteristics of
moving targets, such as a high speed and complex motion form (often accompanied by spin,
precession, maneuver, etc.), will also lead to imaging processing difficulties. Therefore, the
imaging conditions of ISARs are harsh, and the requirement for radar operating parameters
is also high.

Besides the high dimension, ISAR images as the target recognition feature also have
problems of translation, rotation, scale change, etc. Therefore, feature extraction, such as
moment features and area features, can be carried out to distinguish different targets [48].

(3) Tomographic SAR and Interferometric SAR image characteristics

Traditional SARs can only perform 2D imaging. However, interpretations based on
conventional SAR images have two main difficulties: (1) Two-dimensional SAR images
have difficulty accurately reflecting the real three-dimensional (3D) structural character-
istics of targets due to the geometric deformation phenomena such as overlay, masking,
top-to-bottom inversion, and perspective expansion [49]. In complex environments, the
deformation phenomena will cause the target to be indistinct. (2) Target scattering charac-
teristics are very sensitive to the observation angle, and therefore, the SAR image features
are greatly affected by the observation angle, and the target information obtained is incom-
plete [50].

Three-dimensional SAR imaging is an important development direction of traditional
2D SAR imaging in the field of fine information acquisition and perception, which can
obtain high-resolution 3D information of the range, azimuth, and elevation of targets and
can distinguish multiple targets overlapping in the same pixel of 2D SAR images.

By extending the synthetic aperture principle of SARs to the elevation direction of
3D imaging, tomographic SAR (TomoSAR) imaging can reconstruct the 3D information of
scatters and invert the elevation profile, which can effectively solve the overlay effect in
2D SAR imaging [51]. Compared with interferometric SARs (InSARs), TomoSAR imaging
technology can not only acquire the elevation information of target scatters but can also get
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the distribution of scatters in the elevation direction, which can fully restore the real 3D
scene [52]. Based on these advantages, the TomoSAR has become one of the most popular
and promising 3D imaging methods.

The 3D SAR imaging of complex structures is a significant but extremely challenging
task in the field of SAR imaging. Currently, the common 3D SAR imaging technology
relies on multiple channels or multiple flights in the direction of elevation, which has high
requirements on radar systems and data collection systems [53]. Circular SARs extend
the observation dimension of conventional SARs to the aspect dimension, which makes
the obtained target information significantly richer [54]. Firstly, circular SARs have the
capability of resolving overlay, so the signal contains 3D structure information about the
target. Moreover, circular SARs can obtain more complete target scattering characteris-
tics by complementing scattering information from different angles [55]. Lin et al. [56]
combined the advantages of the high-precision altitude measurement of InSARs with the
advantages of the full-aspect observation of circular SARs to mine the 3D imaging capabil-
ity of complex structural targets. By adopting the method proposed in [56], the 3D SAR
images of the FAST radio telescope with a full aspect were obtained for the first time, and
the comparison between a conventional stripmap 2D SAR image and a full-aspect 3D SAR
image is presented in Figure 3. Therefore, the full-aspect 3D imaging of circular SARs can
effectively solve the problems of image overlay and angle sensitivity in RATR application
and enrich the ability of SARs to acquire fine features of targets without increasing the
complexity of the system.
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2.1.3. Radar Target Characteristics for Recognition

The information describing target attributes mainly includes physical characteristics,
motion characteristics, micro-motion characteristics, and radiation characteristics. Radars
cannot directly obtain the above information but use echoes to inverse information. Radar
echoes include the amplitude, phase, Doppler shift, frequency, and polarization information
of the signal. (1) The amplitude fluctuation can reflect the structure, shape, and micro-
motion of a target or its components. (2) The accumulation of phase changes can be used for
2D imaging and Doppler feature estimation. (3) The Doppler shift can describe the motion
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and micro-motion characteristics of the target. (4) The polarization information includes
the structure, shape, material, and rotation of the target. Through the above introduction of
radar target characteristics, the features available for RATR are summarized in Table 1.

Table 1. Radar target characteristic classification and common robust features.

Target Attribute Commonly Used Robust Features

Motion characteristics Target altitude, velocity, acceleration, ballistic coefficient, regional features

Micro-motion characteristics
Micro-motion period, spectrum distribution width, waveform entropy, instantaneous

frequency, polarization scattering matrix, depolarization coefficient, maximum
polarization direction angle, moment feature

Physical
characteristics

structural feature Target size, radial length, scatter intensity, strong scattering centers, number of peaks,
width of crest, high-order central moment, scattering center distribution, radial energy

image feature Target contour, area graph, peak feature, shadow feature, wavelet low-frequency
feature, scattering center feature, texture feature, and semantic feature

2.2. Traditional Methods for RATR

The classification techniques used in pattern recognition can be adopted as RATR
methods after specific transformation. According to different feature extraction meth-
ods, RATR approaches can be divided into traditional approaches and deep-learning-
based approaches.

Traditional RATR approaches first process the obtained target information and extract
features manually, then compare and measure the known target feature parameters in
the database, and finally use linear discriminant analysis, SVM, and other classifiers to
achieve the purpose of target recognition. The processing flowchart of the traditional RATR
approach is presented in Figure 4. The algorithm of RATR typically consists of a feature
extractor and a trainable classifier. The feature extractor is usually designed manually to
transform the raw data into a representation with domain knowledge, which has a great
influence on recognition accuracy. Therefore, the key step of this kind of method is the
feature extraction of the target, and the quality of feature extraction directly determines
the recognition performance. Over the past few years, multiple architectures have been
designed for RATR, which can automatically learn features or representations from data,
rather than making features manually.
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2.3. Deficiencies and Challenges of Traditional RATR Methods

To sum up, traditional RATR approaches perform well in some specific scenarios;
however, it is still a rather complex issue in practical application, with many deficiencies
and challenges. At present, the difficulties of RATR still mainly lie in the aspects of radar
data preprocessing, target feature extraction performance, classifier design, etc. [57].

In traditional methods, classical features are mostly obtained from the analysis and
calculation of measurement data and are mostly related to radar parameters, application
scenarios, and observation angles. (1) However, in some complex or unknown scenarios,
for example, the recognition of non-cooperative targets, the detection range is relatively
far, and the surrounding environment is complex and changeable, so the SNR of the echo
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signals is very low, which will make it more difficult to pre-process data and thus greatly
reduce the recognition performance. (2) In addition, a feature is the representation of target
characteristics in different dimensions, which reflects the depth and credibility of feature
mining and determines the separability of different targets to a certain extent. According
to the above analysis of radar target characteristics, target features are manually extracted
and straightforward, but for non-cooperative targets or unknown targets, there must be
deep recessive features that are helpful for recognition. Therefore, how to extract robust
features of the non-cooperative target is an urgent issue to be solved in the study of RATR.
(3) Most importantly, most of these traditional approaches can only learn features that can
be represented linearly, while it is difficult to represent complex nonlinear data. Therefore,
how to design more robust classifiers is in real demand.

3. Application of Deep Learning Technology in RATR

The applicable scenarios and recognition tasks supported by the above radar target
characteristics or features are different. Therefore, when the application scenario of RATR
changes, the generalization ability of each feature needs to be improved. So far, advanced
machine learning methods represented by deep learning have made remarkable progress
in civil optical image processing, speech recognition, and some other fields [58,59]. With
the accumulation of massive equipment-measured data and the continuous optimization
of high-precision electromagnetic simulation software, the application of deep learning
networks for RATR becomes feasible. In this section, classical deep learning network
architectures for RATR will be introduced first, and then related work on micro-motion-
characteristic-based RATR, HRRP-RATR, SAR-ATR, etc., will be reviewed.

3.1. Typical Deep Learning Network Architecture in RATR

The goal of feature self-learning based on deep learning is to improve the general-
ization ability of networks and features, mine the context association relationship of time-
sequential information, and realize the association and transfer of multi-modal features.
The typical deep learning networks commonly used for RATR are described as follows.

(1) Convolutional neural network

The dimension of traditional target feature representation and extraction is limited,
while the special structure of a CNN enables it to learn the hierarchical features of the
target automatically. Taking the recognition of an aircraft target as an instance, the common
method is to transform the one-dimensional echo sequence into a time–frequency 2D
space through time–frequency analysis to picturize radar features; then, the visual feature
extraction mechanism of the CNN is used, and the structure of the CNN is optimized to
realize the deep extraction of target radar characteristics. In other words, the nodes with
a strong response to motion are strengthened, while the nodes with a strong response
to clutter and noise are weakened, and in this way, the self-learning of target features is
realized, and the generalization ability of features is also improved. The basic structure of
the CNN adopted is presented in Figure 5, including convolutional layers, pooling layers,
fully connected layers, and an output layer. The three properties of the CNN, namely local
connection, weight sharing, and convergence, make it invariant to translation, scaling, and
rotation. In addition, regularization and other techniques can be utilized to effectively
alleviate the problem of overfitting in neural network training, and data augmentation
techniques can also be adopted to deal with the problem of insufficient data samples [17,20].
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(2) Deep belief network

A DBN is a kind of probabilistic generation model that can establish the joint distri-
bution relationship between labels and observed values, and it is well-suited for solving
problems of target recognition. The DBN consists of a stack of restricted Boltzmann ma-
chines (RBMs), in which each RBM includes a visible layer and a hidden layer [21]. Figure 6
presents the typical DBN structure, where each RBM is trained using the hidden layer of
the previous RBM as input and its output as input to the next RBM. In addition, the most
common method for training an RBM is to adopt the contrastive divergence algorithm
based on Gibbs sampling, which is applied to compute weight updates during the gradient
descent procedure [60].
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(3) Recurrent neural network

The characteristic representation of radar target changes with time during the obser-
vation time; for example, the warhead target often presents a stable posture, while the
projectile body target appears to roll in disorder. The RNN can process time series data of
arbitrary length by using neurons with self-feedback and is more suitable for mining the
association relationship of context. The structure of the RNN is shown in Figure 7. It is
worth mentioning that long short-term memory (LSTM) is a typical variant of this model,
which is suitable for solving the trade-off problem of historical information in different
recognition tasks [61].
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(4) Autoencoder

An autoencoder is a kind of neural network based on unsupervised learning, which
aims to construct a neural network capable of reconstructing dimensionally compressed
input samples and performing feature expression by constantly adjusting parameters [60].
It is similar to the structure of the RBMs, but the difference is that the autoencoder needs
to define an error function to make the error of the input sample and the reconstruction
result converge to the minimum by adjusting the parameters. The mapping between the
input layer and the middle layer is called encoding, and the mapping between the middle
layer and the output layer is called decoding. The compressed vector is obtained through
encoding and then reconstructed through encoding.

The network structure of the denoising autoencoder (DAE) is the same as that of the
normal autoencoder, but the training method is improved [62]. Random noise is added
to the training sample, and the new obtained sample is input to the input layer. The DAE
can better extract features that reflect the properties of the sample and eliminate the noise
contained in the input sample while keeping the input sample unchanged. The overall
structure is presented in Figure 8.
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(5) Multi-head attention mechanism

The complementarity of the characteristic representation dimensions of different
features can support the association, transfer, and joint representation of different features.
Taking the cooperative association between the HRRP feature and the micro-motion feature
as an example, the HRRP feature can represent the structural characteristics of the target,
while the micro-motion feature can represent the local motion characteristics of the target.
The combination of the two features is helpful to improve the precision of recognition. A
multi-head attention mechanism model is used for parallel computation, which integrates
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the self-attention of radar feature data of different dimensions, focuses on multiple aspects
of different tasks, and covers multiple types of semantic information. It allows the network
to extract interrelated feature information in different representation subspaces. At the same
time, by reducing the dimension of feature data, the consumption of overall computing
resources can be reduced, and the global dependencies among features can be captured
more effectively. The specific calculation formula is shown in (3).

MultiHead(Q, V, R) = Concat(head1, head2, . . . , headh)WO

headi = Attention(QWQ
i , KWK

i , VWV
i )

(3)

where Q, V, and K are the attention parameters, W is the linear transformation parameter
of Q, V, and K, representing the self-attention calculation formula, and Concat represents
the combined formula of multi-head attention.

3.2. Deep Learning for RATR Based on Micro-Motion Characteristics

Any coherent Doppler radar can be adopted for collecting micro-motion echoes of
the target, such as continuous wave (CW) radars, frequency-modulated continuous wave
(FMCW) radars, or pulse-Doppler radars. Recently, more advanced deep-learning-based
methods for RATR using micro-Doppler signatures have been studied, including space
targets (e.g., tactical ballistic missiles), air targets (e.g., drones, flying birds), ground targets
(e.g., vehicles), sea-surface ship targets, and human activities (e.g., gestures, vital signs).
Table 2 lists the deep learning algorithms employed in various works on micro-Doppler
signatures for target recognition.

Table 2. Summary of recognition approaches, target classes, and radar types for micro-motion
characteristic-based RATR.

Areas of
Application Target Classes Methods Radar Acc. Ref. Year

Space targets Ballistic targets AlexNet and
SqueezeNet —— 97.5% [63] 2019

Warhead and decoy LSTM Pulse-Doppler 99% [64] 2020

Air targets

Drones CNN FMCW 96.86% [65] 2022
Three commercial small drones Light CNN FMCW 97.14% [66] 2020

Drones and birds CNN FMCW 94.4% [67] 2020
Fixed-wing aircraft and

hexacopter MobileNetV2 FMCW 99% [68] 2021

Drones CNN —— 93% [69] 2018
Helicopters with 3,4,6,8

propeller blades CNN —— 95.8% [70] 2022

Ground targets

Car, single and multiple people,
and bicycle DNNs FMCW 98.33% [71] 2018

Pedestrians and vehicles SVM-CNN FMCW 95% [72] 2020
Pedestrians, wheeled and

tracked vehicles LeNet5 CW 95% [73] 2021

Pedestrians, wheeled and
tracked vehicles

DCDE + residual
network CW >90% [74] 2022

Human activities

Hand gestures CNN FMCW 95.2% [75] 2021
Hand gestures LSTM FMCW 85.7% [76] 2022

6 human motions LSTM CW 92.65% [77] 2019

6 human motions CNN + Sparse
Autoencoder SFCW 96.42% [78] 2021

6 human motions CNN + Transfer
learning Pulse-Doppler 96.7% [79] 2021

6 suspicious actions CNNs CW 98% [80] 2022
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(1) Recognition of space targets

Due to the short reaction time and high cost of intercepting, it is crucial to distinguish
tactical ballistic missiles (TBMs) from other confusing space targets. It is worth mentioning
that various micro-motions (e.g., precession, nutation, spinning, and wobbling) of space
targets, such as TBMs, exhibit unique micro-Doppler characteristics [81]. Generally, the
warhead of a TBM presents precession and nutation motions, while the decoy exhibits
wobbling motion. Therefore, their individual micro-Doppler signatures highlight this
difference and can be used to distinguish TBMs from decoys. In addition, micro-motion
parameters, such as the precession rate, nutation angle, spin rate, and inertia ratio, can be
obtained and estimated from micro-Doppler signatures, and all of these parameters are
helpful for RATR [82]. The micro-Doppler signatures derived from the precession, nutation,
and wobble motion of space targets are shown in Figure 9.
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Related deep learning algorithms for the micro-Doppler-based recognition of space
targets include the CNN and the RNN. Wang et al. [63] used two deep CNN-based models
to classify space micro-motion targets with spinning, precession, and nutation. Transfer
learning was adopted to train AlexNet and SqueezeNet, making the training process
faster and easier. The micro-Doppler representation of three kinds of micro-motions was
analyzed, and the time–frequency spectrograms of echo signals were generated as the
training dataset. It demonstrated that the designed CNN-based algorithm can realize the
high-precision recognition of space micro-motion targets, in which the recognition accuracy
of spinning targets was the highest while the main misrecognition came from the confusion
between precession and nutation. Han et al. [64] introduced a network architecture for the
recognition of warheads and decoys, which consists of time–frequency transformation, a
one-dimensional parallel structure for feature learning, an LSTM structure for extracting
global information, and a softmax function for classification, and the proposed diagram is
presented in Figure 10. The recognition accuracy of the proposed network was evaluated
under different SNR. The recognition performance of the designed network was better than
that of traditional networks by comparison.
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(2) Recognition of air targets

Air targets with rotating parts have secondary moving components which can induce
an additional Doppler shift. The micro-Doppler effects of these rotating parts are peculiar
to different bodies, such as the rotation of the propellers of fixed-wing aircraft, blades of
helicopters, turbofan of jet engines, and rotor blades of drones, etc., which are shown in
Figure 11. Therefore, the micro-Doppler effects of rotating components can be utilized
for air target recognition [83]. In addition to fixed-wing aircraft, helicopters, drones, and
other flying targets, flapping birds are another common air target, in which the birds’
micro-Doppler signatures come from the flapping, sweeping, and twisting motions of their
wings. Thus, making full use of the quite different micro-Doppler signals can be utilized to
distinguish flying birds from other air targets. Studies [84,85] also studied the micro-motion
features of birds, established the echo modulation model caused by the flapping of the
wings of the bird target during flight, and analyzed the micro-motion features generated.
The micro-Doppler signatures of a bird with flapping wings are presented in Figure 12.

Remote Sens. 2023, 15, x FOR PEER REVIEW 15 of 42 
 

 

(2) Recognition of air targets 
Air targets with rotating parts have secondary moving components which can induce 

an additional Doppler shift. The micro-Doppler effects of these rotating parts are peculiar 
to different bodies, such as the rotation of the propellers of fixed-wing aircraft, blades of 
helicopters, turbofan of jet engines, and rotor blades of drones, etc., which are shown in 
Figure 11. Therefore, the micro-Doppler effects of rotating components can be utilized for 
air target recognition [83]. In addition to fixed-wing aircraft, helicopters, drones, and other 
flying targets, flapping birds are another common air target, in which the birds’ micro-
Doppler signatures come from the flapping, sweeping, and twisting motions of their 
wings. Thus, making full use of the quite different micro-Doppler signals can be utilized 
to distinguish flying birds from other air targets. Studies [84,85] also studied the micro-
motion features of birds, established the echo modulation model caused by the flapping 
of the wings of the bird target during flight, and analyzed the micro-motion features gener-
ated. The micro-Doppler signatures of a bird with flapping wings are presented in Figure 12. 

(a) Fixed wing aircraft (b) Drone (c) Helicopter  
Figure 11. Micro-Doppler signatures of (a) fixed-wing aircraft, (b) drone, and (c) helicopter [83]. 

 
Figure 12. Micro-Doppler signature of birds’ flapping wings [85]. 

In recent years, deep learning approaches for air target recognition based on micro-
Doppler signatures have been studied extensively [65]. A great deal of research work has 
been carried out based on real outdoor experimental environments to distinguish differ-
ent types of drones or to differentiate birds from drones. Park et al. [66] proposed a micro-
Doppler signature extraction approach and a lightweight CNN structure for the recogni-
tion of three commercial drones, namely, DJI Inspire 1, DJI Inspire 2, and the DJI Spark 
series. Experimental results proved that the combination of the proposed method is effec-
tive for the fast and accurate recognition of small drones, which was 10% better than that 
of the conventional method. Rahman et al. [67] developed series CNN networks for drone 
(e.g., DJI Phantom Standard 3, DJI Inspire 1, DJI S900) and bird (e.g., Owl, Eagle, Hawk) 

Figure 11. Micro-Doppler signatures of (a) fixed-wing aircraft, (b) drone, and (c) helicopter [83].

Remote Sens. 2023, 15, x FOR PEER REVIEW 15 of 42 
 

 

(2) Recognition of air targets 
Air targets with rotating parts have secondary moving components which can induce 

an additional Doppler shift. The micro-Doppler effects of these rotating parts are peculiar 
to different bodies, such as the rotation of the propellers of fixed-wing aircraft, blades of 
helicopters, turbofan of jet engines, and rotor blades of drones, etc., which are shown in 
Figure 11. Therefore, the micro-Doppler effects of rotating components can be utilized for 
air target recognition [83]. In addition to fixed-wing aircraft, helicopters, drones, and other 
flying targets, flapping birds are another common air target, in which the birds’ micro-
Doppler signatures come from the flapping, sweeping, and twisting motions of their 
wings. Thus, making full use of the quite different micro-Doppler signals can be utilized 
to distinguish flying birds from other air targets. Studies [84,85] also studied the micro-
motion features of birds, established the echo modulation model caused by the flapping 
of the wings of the bird target during flight, and analyzed the micro-motion features gener-
ated. The micro-Doppler signatures of a bird with flapping wings are presented in Figure 12. 

(a) Fixed wing aircraft (b) Drone (c) Helicopter  
Figure 11. Micro-Doppler signatures of (a) fixed-wing aircraft, (b) drone, and (c) helicopter [83]. 

 
Figure 12. Micro-Doppler signature of birds’ flapping wings [85]. 

In recent years, deep learning approaches for air target recognition based on micro-
Doppler signatures have been studied extensively [65]. A great deal of research work has 
been carried out based on real outdoor experimental environments to distinguish differ-
ent types of drones or to differentiate birds from drones. Park et al. [66] proposed a micro-
Doppler signature extraction approach and a lightweight CNN structure for the recogni-
tion of three commercial drones, namely, DJI Inspire 1, DJI Inspire 2, and the DJI Spark 
series. Experimental results proved that the combination of the proposed method is effec-
tive for the fast and accurate recognition of small drones, which was 10% better than that 
of the conventional method. Rahman et al. [67] developed series CNN networks for drone 
(e.g., DJI Phantom Standard 3, DJI Inspire 1, DJI S900) and bird (e.g., Owl, Eagle, Hawk) 

Figure 12. Micro-Doppler signature of birds’ flapping wings [85].

In recent years, deep learning approaches for air target recognition based on micro-
Doppler signatures have been studied extensively [65]. A great deal of research work has
been carried out based on real outdoor experimental environments to distinguish different
types of drones or to differentiate birds from drones. Park et al. [66] proposed a micro-
Doppler signature extraction approach and a lightweight CNN structure for the recognition
of three commercial drones, namely, DJI Inspire 1, DJI Inspire 2, and the DJI Spark series.
Experimental results proved that the combination of the proposed method is effective
for the fast and accurate recognition of small drones, which was 10% better than that of
the conventional method. Rahman et al. [67] developed series CNN networks for drone
(e.g., DJI Phantom Standard 3, DJI Inspire 1, DJI S900) and bird (e.g., Owl, Eagle, Hawk)
recognition and compared them with GoogLeNet. Compared to the series CNN network,
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GoogLeNet performed better on the dataset but was more time-consuming, proving that
it can be used in practical scenarios. Hanif et al. [68] adopted an AWR 1843 FMCW radar
sensor to collect the returned signal from a fixed-wing aircraft and a hexacopter, and
then the MobileNetV2 CNN was utilized for target recognition based on micro-Doppler
signature images.

At the same time, a simulated dataset is also used for air target recognition. Choi et al. [69]
investigated a CNN-based structure to classify drones based on micro-Doppler images which
were simulated by changing the speed of rotors, the number of rotors, and the direction.
Vanek et al. [70] adopted a CNN to discriminate the number of propeller blades of helicopters
from a simulated micro-Doppler signature dataset.

(3) Recognition of ground targets

Discriminating ground targets such as vehicles, humans, and animals is of great
significance to safety monitoring, intelligent transportation, surveillance, etc. At present,
ground vehicle recognition based on micro-Doppler characteristics, such as tracked or
wheeled vehicles, has been successfully applied to ground surveillance systems [86]. Deep
learning methods are utilized to recognize the micro-Doppler characteristics of different
ground targets, which usually adopted the time–frequency images as the input.

Angelov et al. [71] considered three different types of DNNs, including the CNN,
the residual network, and the combination of the CNN and the RNN, for four classes of
ground target recognition, and these methods were verified on experimental data. Aiming
at the problem of the class-imbalance of pedestrian and vehicle recognition with limited
experimental data, Wu et al. [72] introduced a hybrid SVM-CNN method; in the first stage,
a modified SVM was utilized to identify vehicle targets and adjust the imbalance between
pedestrians and vehicles in the limited data, while the second stage was performed using a
CNN to classify the residual unclassified targets. Experimental results illustrate that the
proposed architecture can promote the performance of class-imbalance recognition on the
algorithm level.

Similarly, for the typical ground targets of pedestrians and tracked and wheeled
vehicles, Zhu et al. [73] considered the micro-Doppler characteristics and designed a multi-
level target recognition network based on the CNN and transfer learning, in which the
first-level structure was adopted to discriminate pedestrians and tracked and wheeled
vehicles, while the second-level method was designed to distinguish the conditions of the
jogging, walking, and stepping of pedestrians; the designed method was proven to be
effective by experiments. In 2022, in order to improve the recognition accuracy under the
condition of low SNR, they [74] further designed a deep convolutional denoising encoder
(DCDE) structure to remove noise without affecting micro-Doppler features effectively and
designed a special residual network to extract micro-Doppler features, reducing the training
burden and achieving higher learning efficiency. The designed structure is presented in
Figure 13. The experimental results indicate that the combination approach has high
recognition accuracy even with low SNR.
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(4) Recognition of sea-surface ship targets

The attitude of the ship target on the sea-surface changes with the fluctuation of the
sea water, which can be manifested as three-dimensional rotation (pitch, roll, and yaw)
simultaneously. Therefore, the micro-Doppler theory provides an effective solution for the
detection and recognition of sea-surface targets.

It has been proven that sea-surface targets possess specific micro-motions, which
are affected by the sea state. In order to describe the refined micro-Doppler signatures
of sea-surface targets, Chen et al. [87] established the sea-surface micro-motion target
echo model under the condition of multiple scenes and verified the correctness of the
theoretical analysis through the measured data. They further adopted real radar data to
analyze the micro-motion characteristics of sea-surface targets which were different from
sea clutter [88].

In the whole radar echo, the sea clutter signal is often stronger than the useful target
scattering signal, which brings great difficulties to the acquisition and processing of the
target micro-Doppler signal and has a serious impact on the recognition of sea-surface
targets. Therefore, it is necessary to deeply study the relation between the target motion
state and echo characteristics and then design the corresponding algorithm to improve the
signal-to-clutter ratio and enhance the ability of radars for sea detection.

(5) Recognition of human activities

Human targets are the current research focus in the field of micro-motion feature
extraction and recognition. Relevant research studies mainly include the identification
of the human body from other living/non-living organisms [89,90], human gait recogni-
tion [91,92], and the detection of human vital features (breathing, heartbeat, etc.) [93,94].
Many of these mature theories have been applied in medical diagnosis, safety monitoring,
and automatic driving and achieved good results.

Due to the complex changes in human motion states (such as stationary, marching,
stepping, creeping, etc.) and the obvious differences in attributes (such as gender, age,
height, weight, etc.), the micro-motion forms (body marching, heart beating, chest fluctuat-
ing, hand and leg swinging, etc.) are diverse. However, the echo modeling of human targets
is a very complicated problem, and so far, there is no ideal solution. Human activity recog-
nition based on micro-Doppler signatures has significantly promoted the development of
smart homes, security surveillance, health care, and other application fields.

Gesture recognition, which is an increasingly considered application in the field of
no-contact human–computer interaction, can also be realized by using micro-Doppler
characteristics. Jiang et al. [75] designed a dynamic gesture recognition system based on
an mm-wave FMCW radar, which adopted the CNN to recognize six kinds of dynamic
gestures, and the recognition accuracy reached 95.2%. Kong et al. [76] introduced an
ultrasonic FMCW radar gesture recognition system, which utilized a specially designed
Conv-LSTM to mine timing features between gesture movements.

In addition, analysis of the micro-Doppler features of diverse human motions, such as
periodic movements (e.g., walking, jogging, crawling, boxing, jumping, throwing, etc.) and
non-periodic movements (e.g., kneeling, falling, etc.) can be used for safety monitoring.
Wang et al. [77] proposed a stacked RNN structure with multiple LSTM layers to identify
the six human motions according to the micro-Doppler signatures. Jia et al. [78] introduced
a network that combined multiple CNNs and sparse autoencoders (sAEs) to extract and
fuse human motion features from micro-Doppler spectral graphs and range maps. For
human motion recognition with insufficient training data, Li et al. [79] designed a CNN
structure as the backbone of transfer learning, which was composed of three interrelated
and necessary parts: data pre-training, data selection of the correlated source, and an
adaptive collaborative fine-tuning algorithm.

In [80], an X-band CW radar was employed to collect data of various human suspicious
behaviors, including crawling, boxing, marching, jogging, jumping with guns, grenade
throwing, etc. Six pre-trained CNNs were adopted for the recognition of human suspicious
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actions, and the experimental results showed that the overall recognition accuracy of
VGG19 using transfer learning outperforms other CNNs, reaching 98%.

3.3. Deep Learning for HRRP-RATR

RATR based on an HRRP has attracted a lot of attention in recent years, which is a hot
branch of current research. Many researchers argued that nonlinear deep networks can
achieve excellent performance in a variety of practical problems, including HRRP-based
RATR. Compared with the shallow network algorithm, the deep network can extract the
local and global features of targets from the HRRP, and the deep features are more robust
and more separable. Many “deep” networks, such as CNN-based, AE-based, RNN-based,
and other improved deep-learning-based approaches, have been applied to HRRP-RATR
to improve target recognition accuracy. In addition, it is worth noting that several inherent
issues in HRRP-RATR, such as amplitude-scale reduction and target-aspect and time-shift
sensitivity, need to be preprocessed or embedded in these deep networks.

(1) CNN-based methods for HRRP-RATR

It is difficult for the classical shallow-model-based algorithms to extract the complete
information or features of the HRRP of the radar target from different angles, while the
deep CNN can automatically extract features from the HRRPs. In 2016, Lundén and
Koivunen [95] established a CNN model for target recognition in multi-static radars, which
can automatically extract high-order features from the HRRP of radar targets from different
angles. The dataset was derived from the simulation calculation of multiple aircraft models,
and the HRRP was augmented by adding Gaussian white noise. Experimental results of the
classifiers from different monostatic and bistatic radars were fused and further compared
with the chosen threshold to identify the target type. It demonstrated that the method has
highly reliable recognition results even at low SNRs.

However, problems such as gradient disappearance, gradient explosion, and over-
fitting may occur during the training process, which will lead to poor generalization
performance of the model. Moreover, if the model parameters of the neural network are
initialized randomly, the model training may fall into a local optimum. Thus, it is difficult
to improve the recognition performance of the whole system effectively only by deepening
the depth of the network.

Inception networks come into being under such circumstances. Guo et al. [96] com-
bined a residual network and an Inception network and proposed a cosine central loss
function to decrease intra-class distance but increase inter-class distance, which is shown in
Figure 14. The dataset was derived from the simulation calculations and data augmentation
of seven ship models. Compared with the CNN and other network structures, the recog-
nition accuracy of this proposed structure is significantly improved under the condition
of fewer training parameters. Based on the same dataset, the research team also proposed
an HRRP recognition algorithm that is based on a deep multi-scale one-dimensional CNN
structure [97] and an HRRP recognition algorithm that is based on a feature pyramid fusion
lightweight CNN [98]. In these two algorithms, a multi-scale convolution kernel was used
to extract the shallow and deep HRRP features, respectively, to ensure that features can
contain the global and local information of the target, so as to effectively enhance the
robustness of the features.
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In addition, for the issue of target-aspect sensitivity, some research teams have also
carried out targeted study. In 2018, Liao et al. [99] constructed an HRRP-RATR method
based on concatenated DNNs by extending and cascading the hidden layers of several
shallow neural networks. The raw HRRP samples and the features extracted from the
previous subnetwork were fused as the input of the next subnetwork, so that the problems
of gradient disappearance, gradient explosion, or overfitting that may occur during the
training process can be solved. The dataset was simulated and measured data of four types
of aircraft, and a secondary-label coding method was carried out to decrease the intra-class
differences between features and increase the inter-class differences, thus solving the issue
of aspect angle sensitivity. The multi-evidence fusion strategy was adopted to further
improve the recognition performance of the system.

Although various research teams have implemented a lot of study work on CNN-
based HRRP-RATR by using the acquired dataset, the emphasis is different, including
analyzing the influence of different CNN structures, activation functions, learning rates,
and other hyperparameters on target recognition accuracy, analyzing the recognition
accuracy of HRRPs at different target-aspect angles or SNR, and analyzing the improvement
of accuracy by fusing recognition results of multi-sensor HRRP data. Compared with
other conventional algorithms, such as the SVM, KNN, multilayer perceptron (MLP),
and principal component analysis (PCA), HRRP-RATR methods based on CNNs present
recognition performance.

(2) AE-based methods for HRRP-RATR

Traditional deep learning networks process each HRRP sample independently, which
ignores the structural similarity and amplitude fluctuation characteristics of the targets in
HRRPs. Therefore, deep networks represented by stack autoencoders (SAEs) are widely
used in HRRP-RATR.

In 2016, Pan et al. [100] designed a novel radar HRRP recognition approach based
on a discriminative deep stack sparse autoencoder (SsAE), which could extract high-level
features reflecting the physical structure characteristics of the target and train HRRP data
globally with limited training data. The framework of the SsAE is presented in Figure 15.
In 2017, Feng and Chen et al. [101] established the stack corrective autoencoder (ScAE) to
learn the stable structure information and correlation of targets from HRRPs. According
to the Mahalanobis distance criterion, the correction term was obtained from the average
contour of each HRRP sample whose covariance matrix was considered as the loss function.
The dataset was derived from the measurements of three types of aircraft, and the data
were preprocessed by centroid alignment and L2 normalization. The experimental results
of comparing the recognition results of the ScAE of different layers with the DAE, linear
discriminate analysis (LDA), DBN [102], and other traditional approaches demonstrated
that the average HRRP contour performs in a smoother and more concise way, and the
proposed method can extract more abstract and useful hierarchical features, which not
only effectively solves the problems of the speckle effect and outliers but also has better
generalization performance.

As above, the SAE uses data to learn features and can obtain feature expression at
different data levels. However, due to the deep structure of the network, it is difficult to
obtain excellent generalization ability under the condition of fast learning. The extreme
learning machine (ELM) has attracted wide attention for its great generalization ability and
fast training speed. Therefore, taking full advantage of the SAE and ELM can help improve
classification performance. In 2018, Zhao et al. [103] introduced an HRRP-RATR algorithm
integrating the SAE and ELM, and the network structure is presented in Figure 16, in which
the SAE was adopted to extract deep features of each hidden layer, and the ELM was
used as the classifier instead of softmax regression, which can enhance the generalization
performance and learning speed. Experimental results demonstrated that compared with
other models, this method has higher recognition ability and shorter training time, and
it also had a good recognition ability under the condition of small training samples. In
the next stage, combing the SAE and ELM was considered as a solution to improve the
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robustness of the model to noise. In terms of RATR based on the ELM, Zhao et al. [104]
further analyzed the effect of the introduction of Dropout on the ELM RATR ability. They
showed that Dropout can not only solve the overfitting problem of neural networks but
also enhance the generalization performance of the model effectively.
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The combination of the sparse autoencoder (sAE) and convolutional autoencoder
(CAE) also provides a way to improve RATR performance. Yu et al. [105] introduced a
sparse convolutional autoencoder (sCAE) network to classify and identify the full-space
and half-space HRRP samples of three vehicle target models. The dataset was derived
from the simulation of electromagnetic computing software. The RATR process of this
model was essentially the same as that of the CNN, which was mainly composed of three
parts: preprocessing, feature extraction, and classification. The preprocessing of the data
was the L2 normalization of amplitude and time-shift compensation based on centroid
alignment. Compared with the traditional LDA, PCA, SVM, DBN, and other model results,
the recognition ability was greatly improved.

As discussed above, HRRP target recognition based on different AE structures has been
widely studied, mainly focusing on analyzing the improvement of recognition accuracy by
extending and improving AE structures and the influence of AE structures with different
depths on recognition accuracy. Compared with the combination of different AE structures,
the introduction of convolution operation improves the accuracy of RATR more obviously,
and the recognition results are better than those of traditional methods.

(3) RNN-based methods for HRRP-RATR

From the above work, it can be seen that deep learning networks can be widely applied
to radar HRRP-RATR. However, the above deep learning networks do not explore the time
dependence between range units. Some studies have proposed methods to describe the
time dependence of HRRPs. In 2013, the RNN was first used for RATR. It is a kind of neural
network with interconnected hidden layers that enables the model to represent dynamic
sequential behavior in the input samples and can achieve advanced performance for the
sequential data of different tasks.

RNNs are often combined with the attention mechanism to achieve superior recogni-
tion performance that is more robust to time-shift sensitivity than traditional approaches.
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In 2016, Xu et al. [106] designed an RNN-based method for radar HRRP target recognition
utilizing time-domain features. Firstly, the proposed structure adopted attention-based
RNN encoding time-domain features to reveal the correlation within the target. Secondly,
the model assigned weights to each part and summed up hidden features with each weight
for RATR. The dataset was the measured flight data of three types of aircraft. Experimental
results showed that the RNN algorithm based on the attention mechanism is very effective
in improving the performance of HRRP-RATR. In 2018, they further developed the target-
aware recurrent attentional network [107] for HRRP-RATR, taking advantage of the time
dependence to explore the informative regions in HRRPs. Specifically, a specific designed
RNN was utilized to mine the sequence correlation in the range units of the HRRP, and
then each time step in the hidden layers was weighted according to the attention mecha-
nism to find the target region that is more informative and discriminative. Considering
the temporal correlation between range units in HRRP samples, Xu et al. [108] studied
a bidirectional LSTM network for HRRP-RATR, combined with a softmax classifier and
voting strategy for classification, and the target recognition performance was improved,
which was proven to be able to overcome the translation sensitivity of the HRRP well.

(4) Improved deep learning methods for HRRP-RATR

The above CNN, autoencoder, and RNN methods presented strong representational
capacity and obtained superior recognition performance than conventional algorithms.
There are also some other variants based on improved deep learning networks that integrate
different network structures with good performance and make improvements according
to the characteristics of the HRRP. While creating a more complex network structure, the
improved network overcomes the shortcomings of gradient disappearance or explosion in
the process of learning. Compared with the simple deep learning network, the improved
network has faster convergence and higher recognition accuracy.

(a) Attention mechanism

The HRRP typically contains a large number of non-target regions, where the informa-
tion is unhelpful or even counterproductive for target recognition. However, conventional
feature extraction approaches often ignore the fact that the information contained in differ-
ent regions of the HRRP is of different importance. The attention mechanism, derived from
research in the field of computer vision, can selectively focus on related information while
ignoring others that are less relevant. Considering that HRRP data contain non-target infor-
mation, the attention mechanism is applied to HRRP-RATR to pick out the discriminative
feature of the target region.

In order to obtain more useful information and discriminative features from the HRRP,
Du et al. [109] introduced a region-factorized RNN for HRRP-RATR, which can not only
take full advantage of the temporal dependence between HRRP samples through the
RNN structure but can also automatically find the target region in the HRRP through
clustering. The attention mechanism was adopted to weight the recognition contribution
rates of different hidden layers in each time step, which is presented in Figure 17. Besides
the competitive recognition accuracy of RATR, the proposed method also possessed a
promising interpretability by comparing it with other conventional approaches.

Chen et al. [110] designed a target-attentional CNN structure combining the attention
mechanism and CNN for HRRP-RATR, which is presented in Figure 18. In the first step,
a one-dimensional CNN was adopted as the feature extractor to exploit the structural
features of HRRP data. Secondly, the attention mechanism was implemented through the
bidirectional gated recurrent unit structure to enhance the model’s interest in the useful
target information region, which fully considered the sequential relationship between the
features of different regions in the HRRP, so as to locate the target region.
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Considering the target-aspect sensitivity of the HRRP, especially in a complex envi-
ronment with non-cooperative targets, the target-aspect sensitivity has a great impact on
the performance of HRRP-RATR. Song et al. [111] introduced a generative adversarial
network (GAN) with aspect-directed attention, which could not only generate multi-view
HRRP samples but could also exploit the internal feature of the HRRP through a cascade of
self-attention layers. Although most of the aspect information of the non-cooperative target
is missing, experimental results showed that the generated HRRP can still be categorized
correctly, and the recall rate of HRRP-RATR is improved by more than 40%.

(b) Network fusion methods

The improved HRRP-RATR methods integrate different networks with superior per-
formance and make improvements according to the HRRP characteristics. In addition to
creating a more complex network structure, the shortcomings of gradient disappearance or
explosion during the training process are overcome. Compared with the simple structure
of deep learning networks, the improved fused network presents faster convergence and
higher recognition accuracy.

Zhang et al. [112] designed a deep network structure by fusing CNN and LSTM
network structures and concatenated the one-dimensional features extracted from signal
time–frequency graphs with the original HRRP samples using a multi-layer CNN, which
acted as the input of the LSTM network for RATR. The fused method is presented in
Figure 19. The dataset was constructed by simulating the X-band calculation of four simple
targets, namely a cone cylinder, a cylinder, and two different sizes of cones. The changes
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in target recognition accuracy under different SNR conditions have also been considered.
RNNs are powerful network structures that specialize in processing sequential data. A
wavelet AE network combined with the RNN was designed for HRRP-RATR in [113],
which can exploit the spectrum features and fully consider the dependency and correlation
between range cells in HRRP samples; therefore, the proposed fusion model achieves
superior recognition accuracy than the sole RNN model.
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(c) Imbalanced and open-ended data distribution

At present, most research on deep-learning-based RATR algorithms is conducted
under the assumption of balanced samples and a close dataset, in which the “balanced
samples” means that the number of samples of each class is approximately equal, and
the “close dataset” means that the classes of training are the same as the classes of testing.
However, samples are often imbalanced and open-ended in practical application [114].
Zhang et al. [115] designed a dual self-attention neural network combing a memory mecha-
nism for HRRP-RATR on an imbalanced and open dataset, in which an Arc-loss function
was introduced as a classifier to improve the inter-class difference and intra-class similarity
in one integrated model. Compared with other existing methods, the discriminative feature
representation of the proposed approach was more obvious, and the recognition rate was
improved, indicating that it would have a good application prospect in imbalanced and
open HRRP-RATR.

Currently, there is no typical public dataset for the research of deep-learning-based
HRRP-RATR. Most of the datasets for HRRP target recognition come from model simulation
calculations or anechoic chamber measurements carried out by different research teams
themselves. However, different studies have also shown that deep-learning-based HRRP-
RATR is a promising approach with higher recognition performance than most traditional
recognition approaches.

3.4. Deep Learning for SAR-ATR

The scattering imaging mechanism of the SAR and the existence of background noise
or clutter make SAR image interpretation very different from that of optical images. In
traditional target recognition and classification algorithms, feature extraction is achieved
by manual selection, which only uses the texture features of SAR images and does not
exploit the more valuable semantic features. In addition, manually selected features are
often incomplete and may fail under noisy conditions. Different from traditional RATR
technology, deep learning networks, especially CNNs, can automatically learn and select
the target’s hierarchical features and perform target recognition, which not only improves
the recognition accuracy but also reduces the computational pressure. At present, for SAR-
ATR based on deep learning, researchers mostly conduct studies from four research aspects.
The specific recognition approaches and effects based on deep learning are presented
in Table 3.
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Table 3. Some deep-learning-based methods and effects on SAR-ATR in recent literature.

Method Improvement Specific Methods Main Contributions Dataset Acc. Ref. Year

Semantic feature extraction
and optimization

Sparse autoencoder + CNN Using a single layer of CNN to extract
features. MSTAR 84.7% [116] 2015

CNN without fully connected
layers

Using sparsely connected convolution
architecture to reduce overfitting. MSTAR 99% [117] 2016

Multi-scale CNN Extracting robust multi-scale and hierarchical
features of built-up areas. TerraSAR-X 92.86% [118] 2016

CNN + SVM
Using SVM to classify the feature map and
introducing class separability measure into
the loss function.

MSTAR 93.76% [119] 2016

CNN + SVM Feature maps extracted by CNN are classified
by SVM. MSTAR 99.5% [120] 2016

CNN + autoencoder Combining CNN and autoencoder to extract
features of military vehicles. MSTAR 93% [121] 2017

CNN + autoencoder Splitting CNN into SNN and CAE to greatly
reduce the learning time. MSTAR 98.02% [122] 2015

Shallow CNN Designing a light-level shallow CNN to
classify targets. MSTAR 99.47% [123] 2017

Multi-aspect

CNN
Using pseudo-color image as input to reduce
the difference between targets at different
azimuth angles.

MSTAR 98.49% [124] 2018

CNN + parallel network topology
Sufficient multi-aspect SAR images are
generated and features are extracted using
parallel CNN.

MSTAR 98.52% [125] 2018

Bidirectional LSTM
A bidirectional LSTM structure is used to
explore the spacing-varying scattering feature
of different aspects.

MSTAR 99.9% [126] 2017

Multi-stream CNN
Multi-stream CNN is used to extract the
multi-view features and then combine them
by the Fourier feature fusion.

MSTAR 99.92% [127] 2018

EfficientNet + BiGRU + island loss
Combining EfficientNet, BiGRU, and island
loss to reduce azimuth sensitivity of SAR
targets.

MSTAR 100% [128] 2021

Small-sample dataset

Data augmentation

Extending the training data by central
clipping and using ResNet to extract features. MSTAR 99.56% [129] 2017

Three domain-specific data augmentation
operations are performed on SAR images
utilizing CNN.

MSTAR 93.16% [130] 2016

Constructing simulated SAR images based on
CAD models to fill the data gap. —— —— [131] 2016

GAN

Using GAN to generate SAR target slice
images. MSTAR —— [132] 2018

Combining semi-supervised CNN and
dynamic multi-discriminator GAN. MSTAR 97.81% [133] 2019

Transfer learning

Transferring the pre-trained CNN model from
the 3-class target recognition task to the
10-class target recognition task.

MSTAR 99.13% [134] 2018

Transfer learning combined with VGG16. MSTAR 94.4% [135] 2020

Transferring a CReLU-based model from
simulated dataset to MSTAR dataset. MSTAR 99.78% [136] 2020

Transferring a CNN-based model pre-trained
with MSTAR to OpenSARShip.

MSTAR,
OpenSARShip 90.75% [137] 2020

Metric learning

The convolutional highway unit network is
adopted for training with limited SAR data. MSTAR 99% [138] 2017

A Siamese CNN based on deep learning and
metric learning is adopted to evaluate the
similarity between data.

MSTAR,
OpenSARShip 94.77% [139] 2019

The Siamese network is introduced to
evaluate the probability of similarity between
two samples.

MSTAR 93.2% [140] 2019

Multi-feature fusion

CNN Using intensity and edge information jointly. Self-built 93.64% [141] 2017

Canny-WTD-CNN

The edge features extracted by Canny
operator fused with the wavelet features
extracted by wavelet threshold denoising
method as the input of CNN.

MSTAR 99.14% [142] 2020
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(1) Semantic feature extraction and optimization methods of SAR images

The key question of SAR-ATR research is how to learn the most representative target
features in SAR images. A semantic feature is an abstract high-level feature representation
formed by the combination of low-level texture features, which has a high discrimination
ability for images and targets. How to learn high-level semantic features from SAR images
is also a complicated issue in image interpretation.

In 2015, Chen et al. [116] initially adopted single-level CNN to automatically extract
representative features for SAR-ATR. The classification accuracy of 90.1% and 84.7% was
achieved by using the learned morphological features in the Moving and Stationary Target
Acquisition and Recognition (MSTAR) dataset with 3 and 10 classes of targets, respectively.
Later, in 2016, a novel full CNN composed only of sparsely connected layers was designed
to cut down the number of model parameters and avoid the problem of overfitting [117].
The network structure is composed of five convolutional layers and three sub-sampling
layers. The training results on the MSTAR dataset demonstrated that the classification per-
formance of the proposed approach is significantly superior to the traditional approaches,
and the classification accuracy of the 10 classes of targets can reach 99%, which reflects the
advantages of CNN-based approaches in SAR-ATR.

In the CNN, convolutional and pooling layers are alternately connected to learn
hierarchical target features. Although the traditional CNN has a certain robustness, small
changes in the input image size will still lead to big differences in the final recognition
results [143]. It is difficult to extract enough semantic features using s single-scale CNN, so
a multi-scale CNN has been applied to SAR-ATR. Li et al. [118] designed a multi-scale CNN
structure to learn multi-scale training features directly from the image patch sizes of 14 × 14,
42 × 42, and 84 × 84, which is shown in Figure 20. By connecting three convolutional
layers and three pooling layers alternately, the structure extracts the hierarchical features of
the target, and eventually, the target is recognized through feature fusion. In the task of
RATR in urban construction areas, the training results on the TerraSAR-X dataset obtained a
classification accuracy of 92.86%, which is better than that of the single-scale CNN (89.64%)
and the gray co-occurrence matrix algorithm (88.78%).
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In traditional CNN models, a softmax regression model is usually used as a classifier,
but its single-layer fully connected method is not effective in solving nonlinear classification
problems. Meanwhile, the SVM can map nonlinear classification to the high-dimensional
feature space through the kernel function, which converts the nonlinear classification
issue into linear classification, and performs well in solving the high-dimensional pattern
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recognition problem. In 2016, Tian et al. [119] adopted the SVM to classify the feature map
extracted by the CNN and brought in the class separability measure into the loss function,
thus improving this network’s ability to distinguish between categories. Experimental
results on the MSTAR image data demonstrated that without manual feature extraction, the
proposed method achieves 95.90% recognition accuracy in the 3-class target classification
dataset, while the average recognition accuracy in the 10-class dataset is still as high as
93.76%. Wagner et al. [120] designed a SAR-ATR approach based on the combination
of the SVM and the CNN, in which the representative feature is achieved by utilizing
the CNN, and then it is input to the SVM classifier for discrimination. The combination
structure presented in Figure 21 can enhance the generalization ability of the classifier while
keeping the computation time low and has a more accurate recognition rate and better
robustness. In 2017, Housseini [121] proposed a recognition method combining the CNN
and the convolutional autoencoder, first extracting the trained filter from convolutional
autoencoders and then applying them to the CNN. This scheme significantly reduces the
time complexity of the algorithm without reducing the recognition accuracy.
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In order to enhance the recognition performance of the deep-learning-based SAR-ATR
algorithm, including accuracy and speed, generally, one must modify the network structure
and optimize the network algorithm to improve the network recognition accuracy while
reducing the network complexity and effectively reduce the time consumption of training.
For example, the small-batch momentum gradient descent algorithm is usually adopted to
speed up the learning process, reduce the oscillation, and seek the optimal parameters faster.
Li et al. [122] designed a fast recognition structure to extract high-level features through
unsupervised training, utilizing convolutional layers and pooling layers as convolutional
autoencoders, while other fully connected layers were treated as classifiers for target
recognition. It demonstrated that the modified approach can greatly shorten the model
training time. He et al. [123] presented a light-level CNN and proposed an unsupervised
detection method, which first adopted the MSTAR dataset to train a shallow CNN for
classification, then extracted the outputs of the convolutional layers, and achieved fast
target recognition and detection through maximum sampling and clustering processing.

(2) Multi-aspect SAR-ATR methods

The same target in the SAR image will be very different from different aspects, so it
is greatly sensitive to the aspect of the targets. In other words, different imaging angles
will make a difference to the recognition results of SAR-ATR, and only utilizing the single-
azimuth observation image of the target cannot take full advantage of the rich information
of SAR images. Therefore, more robust and reliable multi-aspect SAR-ATR approaches
are needed, and currently, the issue of multi-aspect SAR-ATR has gradually become the
research focus in the field of RATR. In addition, the MSTAR dataset also provides a 2D SAR
image target with different aspects.

Since the SAR images presented by the same target in different aspects will be greatly
different, multi-aspect images are used jointly for SAR-ATR, as illustrated in Figure 22.
Zou et al. [124] introduced a multi-aspect SAR-ATR approach based on the CNN structure,
which inputs SAR image data of three azimuth angles into the network for processing as
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RGB images of three channels of color images, effectively reducing the difference between
targets at different azimuth angles and improving the recognition effect. Pei et al. [125]
further improved the generation method of multi-aspect SAR data to ensure sufficient
network training input with limited original SAR images. The structure of CNNs with a
multi-input parallel topology is presented in Figure 23. Hierarchical learning and multi-
layer fusion were adopted to obtain excellent recognition performance and reduce the
demand for the number of raw SAR images. Aiming at the issue of the aspect sensitivity
of SAR targets, Wu et al. [144] established an improved pooling CNN model, which can
improve the recognition performance of the CNN at different azimuth angles without
increasing the algorithm complexity.
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In addition to the CNN, the RNN is also widely used in multi-aspect SAR-ATR. In order
to learn a wide range of contextual features at the same time, Zhang et al. [126] explored
a bidirectional LSTM network for SAR-ATR based on a multi-aspect-aware mechanism,
which is presented in Figure 24. Firstly, the multi-aspect spatial changing image sequences
were constructed by selecting SAR images from different aspects. Subsequently, the feature
extraction of multi-aspect spatial scattering information was realized by employing the
three-patch local binary pattern and Gabor filter methods. Then, the feature dimension
is reduced by adopting the fully connected layers. It demonstrated that the classification
accuracy can reach 99.9% on the MSTAR dataset, and compared with other traditional
algorithms based on deep learning, the proposed architecture presented superior anti-
confusion and anti-noise performance. Zhao et al. [127] also designed a multi-stream
structure based on the CNN to fuse the multi-view features of the same SAR target. Then,
they further introduced a multi-aspect SAR-ATR model based on EfficientNet and BiGRU.
A set of EfficientNet networks with shared weights were used first to learn the spatial
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features of each image in the image sequence, and then after dimension transformation, the
BiGRU network was further employed to learn the sequence information of multi-aspect
SAR images [128]. The results demonstrated that the recognition accuracy of the proposed
algorithm on the MSTAR dataset can reach 100%, which is superior to other more advanced
SAR-ATR approaches on the same MSTAR dataset and has a certain degree of robustness.
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(3) SAR-ATR methods based on small-sample dataset

Sufficient training samples are needed in the learning process of deep learning net-
works. However, in the actual SAR-ATR application, because of its unique imaging mode,
the acquisition cost of SAR images is high, and the data that can be used as a training set
are very limited. Especially in military applications, the high requirement of real-time
information leads to the limited SAR image data of specific targets, and the lack of a training
set easily leads to the over-extraction of features and overfitting of models, which make it
difficult for the network to be effectively trained. Therefore, the small-sample problem is
always a prominent challenge in the field of SAR-ATR. The current SAR-ATR approaches
based on small-sample data are summarized as follows:

(a) Data augmentation

In the process of deep learning model design and training, data augmentation methods
are often adopted to expand the sample data to prevent the model overfitting problem. The
main principle of data augmentation is to take full advantage of the existing dataset and
increase the amount of data by changing part of the data structure or constructing a new
way of data combinations. SAR images after data augmentation are shown in Figure 25,
such as flipping, shifting, rescaling, rotating, and adding noise to the data, etc., so as
to generate sufficient data and enhance the generalization and learning performance of
the model.

Data augmentation technology can change the position of image pixels and the size of
the image and make the image undergo geometric transformation, but the characteristics
of the image will not change accordingly, so that the “new” image can be obtained and the
training dataset can be expanded.

Furukawa et al. [129] extended the training data by central clipping and other data
augmentation methods and trained a deep residual network with 18 convolutional layers by
referring to the idea of the residual network. The CNN with extended training data achieved
a recognition accuracy of 99.56%, which fully reflects the effectiveness of extended training
data in improving classification accuracy. Ding et al. [130] utilized a data augmentation
algorithm to synthesize SAR images with specific angles from images with known azimuth
angles. After the attitude is synthesized, the image is processed with noise to obtain a larger
training dataset. Experimental results on MSTAR demonstrated that expanding the dataset
through data augmentation technology can significantly enhance the recognition accuracy
of DCNN. Before data augmentation, the recognition accuracy of the CNN was 89.14%,
while after data augmentation, the recognition accuracy of the CNN increased to 93.16%.
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In addition, generating simulated data through simulation experiments is also a
very effective method to solve this problem. Odegaard et al. [131] used CAD to generate
simulated images, and the experiment demonstrated that the usage of simulated data was
an effective way to improve the recognition results of SAR images by the CNN.

(b) Generative adversarial network

In recent years, GANs have also been applied in the field of SAR-ATR. To some extent,
the GAN can learn new image samples with a similar distribution through model learning.
The general structure of the GAN for SAR-ATR is presented in Figure 26. The GAN can
be applied to SAR image processing and data augmentation, using the GAN to generate
SAR target slice images and SAR images with specific azimuth, which can realize the
augmentation of the SAR image dataset [132]. In 2019, Zheng et al. [133] proposed a
semi-supervised SAR-ATR approach combining the CNN and GAN, adopting the GAN to
generate unlabeled images, which together with the original labeled images serve as the
input of the CNN; thus, effective training and recognition can be achieved with limited
training samples. Experiments on the MASTR database indicated that this method can
improve the recognition accuracy and robustness of the SAR-ATR system. At the same time,
the GAN presents a superior application potential in the fields of SAR image denoising
and SAR image super-resolution reconstruction.
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(c) Transfer-learning-based methods

The main idea of transfer learning is to transfer the parameters of a pre-trained
model or weighted samples to new models to help construct new models with stronger
generalization performance, which has been widely applied to the field of SAR-ATR with
small SAR image samples. The framework of transfer learning is shown in Figure 27, for a
given source domain Ds and its corresponding source task Ts and a target domain Dt and
its corresponding target task Tt; transfer learning obtains the target prediction function
f (g) of the target domain Dt by learning the corresponding knowledge from the given
source domain Ds and source task Ts.
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For the MSTAR dataset, Chen et al. [134] took three types of target data as the training
samples of the source domain first, and the CNN model was pre-trained for the three-
class target recognition task. Then, by constructing the same CNN architecture as the
pre-trained model as the target task in the target domain and taking the pre-trained model
as the initial parameter, the model of 10-class target data was fine-tuned and trained, and
the recognition accuracy reached 99.13%. Ren et al. [135] designed a SAR-ATR approach
combining transfer learning with VGG16. The target features were extracted by fine-tuning
the pre-trained model of transferring VGG16 for the target recognition on the MSTAR
dataset; the recognition accuracy was improved to 94.4%, which verified the feasibility of
the application of transfer learning in SAR-ATR. Another method is to transfer the pre-
trained model learned from sufficient simulated SAR images to the real SAR images, which
can effectively solve the problem of overfitting caused by insufficient SAR images [136].

The essential problems of transfer learning applied to SAR-ATR are usually discussed
from three aspects: (1) which source tasks and network models are more suitable for
transferring to SAR image targets; (2) the transferred features of which layers are more
general to SAR targets; and (3) how to carry out transfer learning in SAR-ATR tasks
effectively [137]. To solve the above issues, Huang et al. [137] presented a novel domain
adaptive transitive transfer learning algorithm based on multi-source data, which could
reduce the difference between the source data and target data of SAR images. Experimental
results on the MSTAR and OpenSARShip datasets validated that the domain adaptive
learning mechanism can enhance the performance of SAR-ATR.

(d) Metric learning

Metric learning is a branch of machine learning and is commonly used in the field
of classification, which can learn the metric distance function from data for different
tasks independently, thereby enhancing the performance of similarity-based algorithms. By
measuring the similarity between two samples, sample data can be classified into categories
with greater similarity. In addition, metric learning is one of the approaches to solve the
issue of small-sample classification, which is generally realized by the Siamese neural
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network (SNN). Compared with the classical networks, the SNN model mainly judges the
similarity of the input samples without knowing the category of each label. It obtains a
similarity measure through data learning and compares the similarity of the new samples.

Taking the SAR image target as an example, the structure of the SNN is presented in
Figure 28. First, the two SAR image target samples X1 and X2 are taken as the input of
the SNN, and the low-dimensional features GW(X1) and GW(X2) are obtained through the
feature extraction of the SNN. Then, the distance of the two input vectors is calculated by
some distance measure, and the similarity EW of the two input SAR image targets is judged.
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Lin et al. [138] took two SAR image target samples as the input of the SNN and
obtained low-dimensional features through the feature extraction of the SNN; then, the
distance of two input vectors was calculated by some distance metric methods, and the
similarity of the two input SAR image targets was evaluated. Aiming at the small-sample
problem of SAR-ATR, Wang et al. [139] used the strategy of constructing positive and
negative sample pairs to expand the dataset and designed a metric-learning-based Siamese
CNN to calculate the similarity between the training sample and the testing sample. Then,
a weighted voting mechanism was adopted to identify specific types of targets in the
Siamese CNN. Experiments on the MSTAR and OpenSARShip datasets demonstrated the
effectiveness of the proposed algorithm. Pan et al. [140] also adopted the SNN method
for small-sample SAR-ATR, in which features were extracted through the SNN first, and
then the output of a single branch of the SNN was employed as the input of an additional
classification network, which could avoid calculating the similarity between two samples.
Experiments on the MSTAR dataset with 10 classes of targets showed that the similarity
between the same type of targets decreased while the between-class distance increased,
thereby, improving the performance of the classifier under small-sample conditions.

(4) SAR-ATR methods based on multi-feature fusion

Different sensors can capture different statistical characteristics of the same target,
and combining different characteristics is helpful to enhance the performance of SAR-ATR.
Wang et al. [141] proposed a SAR-ATR algorithm based on multi-feature fusion, which
fused the intensity feature and gradient amplitude feature into the classification network,
and demonstrated the high efficiency of the method through experiments. Because of
the complementary properties of the radar image and optical image, target recognition
based on a SAR and an optical sensor has been paid more and more attention. For the
change detection of SAR images and optical images, Liu et al. [145] introduced a symmetric
convolutional coupling network that can extract feature maps by convolving and pooling
optical images and SAR images in different periods, and then the feature maps were directly
compared and analyzed to achieve the pixels that have changed in the image, and the
change detection of the whole image was further carried out pixel by pixel. Wang et al. [142]
presented an optimization approach of SAR-ATR utilizing multi-feature and the CNN,
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namely Canny-WTD-CNN. The edge features extracted by the Canny operator were adap-
tively fused with the wavelet features extracted by the wavelet threshold denoising method
as the input of the CNN. Experimental results on the MSTAR database with three-class
targets verified the efficiency and feasibility of the fusion algorithm, and the recognition
accuracy reached 99.14%.

3.5. Deep Learning for Other Radar-Target-Characteristic-Based RATR

For other narrowband radar target characteristics such as echo characteristics, the
application of deep learning for RATR is relatively rare. Inspired by the huge success of deep
learning techniques in the field of SAR-ATR and computer vision, Fan et al. [146] designed
a five-layer CNN for typical cube, tetrahedron, and triangular prism recognition utilizing
raw radar signals with different angles, which could avoid complex signal processing
such as matched filtering. Iqbal et al. [147] discussed an algorithm to predict the forward
motion and backward motion of the target by applying a CNN framework on echo signals.
The direction of target motion is directly reflected by the variation in echo amplitude and
frequency. It was concluded that deep learning methods based on raw echoes can be
applied in target recognition, especially for targets with simple shapes or basic motions,
which have distinct echo characteristics.

As the basic property of a radar target, RCS characteristics are a vital narrowband
recognition feature for RATR in low-resolution radars. For simple-shape targets, a CNN
model was proposed to classify corner reflectors based on the RCS characteristics of corner
reflectors [148]. For rotating targets, Wengrowski et al. [149] generated RCS signals and
adopted an 18-layer residual network to classify cone, cylinder, plate, and spheroid targets,
which only produced a 2% recognition error on self-generated datasets. It demonstrated
that deep learning methods can perform well on RCS signals. According to the analysis
in [150], there are significant differences in RCS characteristics between aircraft targets
of various sizes, materials, and shapes, and therefore these characteristics can be applied
to RATR. Considering the large variance of the RCS of different targets and the effect of
micro-motion factors on RCS time series, Yang et al. [151] analyzed the statistical RCS
characteristics and adopted multilayer CNNs and RNNs to classify targets based on RCS
time series, respectively, confirming that deep learning methods have the capability of
target recognition based on RCS series, especially with micro-motion difference. The depth
of the model has a vital effect on the accuracy of recognition, and RNN models are slightly
inferior to CNN models. However, the statistical models and machine learning classifiers
for one-dimensional RCS data have been proven to be able to obtain superior recognition
performance than deep learning approaches in low-SNR scenarios [152]. Finally, it is worth
mentioning that the RCS dataset used for the above work was obtained through simulation
modeling and calculation.

3.6. Summary of Deep Learning Methods for RATR

From the above existing studies, it is obvious that deep-learning-based RATR ap-
proaches mainly use the amplitude, phase, frequency, and other information of the target
echo signal, while the polarization and target pole information of the target is relatively
limited. On the one hand, for low-resolution radars, it is difficult to obtain stable and
clear polarization and pole characteristics from the radar echo directly; on the other hand,
it is limited by the accurate measurement technology of the polarization scattering ma-
trix and pole distribution. The development of high-resolution radar technology and
advanced signal processing technology makes it possible to obtain stable and definite target
characteristics in radar echoes.

Deep learning techniques turned out to be qualified and remarkable in RATR, which
could be designed for RATR tasks with different radar target characteristics. Among them,
RATR based on the wideband target characteristics of high-resolution radars is the most
mature application, especially based on 2D images. For HRRP-RATR, different prepro-
cessing methods or embedding deep networks are required to mitigate the sensitivity of
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the amplitude scale, target aspect, and time shift. As a kind of narrowband characteristic,
micro-motion characteristics used for RATR can be developed well because of signal pro-
cessing technology. Therefore, various radar signal processing methods can be considered
as preprocessing means, which could help to extract features effectively and promote
recognition ability.

4. Datasets for RATR

The application of deep learning algorithms relies heavily on large-scale, measurable,
standardized, and accurate training samples. Therefore, the availability of training data
with labels is considered to be the first prerequisite for promoting the progress of deep
learning approaches in RATR. Although there have been many successful research studies
and applications of current deep learning methods in radar target characteristics and RATR,
most studies still use self-built datasets or simulated datasets. In general, there are few
publicly released datasets for HRRP-RATR or micro-motion RATR, except for SAR-ATR. In
this section, we focus on the datasets of MSTAR, OpenSARShip, and FUSAR_Ship that are
relatively widely used in SAR-ATR.

4.1. Dataset Descriptions

(1) MSTAR dataset

The MSTAR dataset [153], sponsored by the Defense Advanced Research Projects
Agency and the Air Force Research Laboratory and released by the Sandia National Labo-
ratory, consists of images of military targets utilizing an X-band SAR sensor in a one-foot
resolution spotlight mode. It is the main data source of SAR-ATR research, which promotes
the development of SAR-ATR.

In the MSTAR dataset, the range and azimuth resolution of each SAR image is
0.3 m × 0.3 m, the pixel size of most target images is 128 × 128, and the polarization
mode is HH. The dataset is mainly composed of different types of stationary ground vehi-
cle targets (e.g., 2S1, BMP2, BRDM2, BTR60, BTR70, D7, T62, T72, ZIL131, ZSU234) from
full aspect angles (0~360◦) and different depression angles, which could facilitate the study
of the influence of different imaging angles on the recognition algorithm. Among them, the
data with depression angles of 15◦ and 17◦ have been adopted by most researchers. Table 4
presents the number of 10 types of target slices under these two groups of depression angles.
In addition, MSTAR also contains a small number of environmental scenarios, including
rural and urban scenarios.

Table 4. Sample numbers of different types under different depression angles in MSTAR dataset.

Depression Angles (◦) 2S1 BMP2 BRDM2 BTR60 BTR70 D7 T62 T72 ZIL131 ZSU234

15 274 195 274 195 196 274 273 196 274 274
17 299 233 298 255 233 299 299 232 299 299

(2) OpenSARShip dataset

The OpenSARShip dataset [154], constructed and released by Shanghai Jiao Tong
University in 2017 (OpenSARShip) and 2019 (OpenSARShip2.0), is specifically for ship
target recognition in SAR images. Its data were acquired from the Sentinel-1 satellite,
and the polarization modes are VH and VV, which provides 11346 SAR ship images
integrated with automatic recognition system information, including cargo, dredging,
fishing, passenger, pilot vessel, port tender, and other types which make up a total of
17 ship targets [155,156].

(3) FUSAR_Ship dataset

FUSAR_Ship dataset [157] is a SAR-AIS open counterpoint dataset of the Gaofen-3
(GF-3) satellite supported by Fudan University. GF-3 is the first civilian C-band fully
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polarized spaceborne SAR of China, which is mainly used for marine remote sensing and
ocean monitoring.

The high-resolution FUSAR_Ship dataset contains 15 major ship classes (including
cargo, tankers, fishing, and so on), 98 subclasses, and many marine targets that are not
ship targets. The data slices were taken from 126 original Gaofen-3 remote sensing images.
The polarization mode included DH and DV, and the imaging mode was UFS, covering
various sea, land, coast, river, and island scenes. There are 16144 slices in this dataset,
including 6252 ships with matched AIS information, 2045 strong false alarms such as bright
spots which are similar to ships, 1461 bridges and coastlines, 1010 coastal areas and islands,
1967 complex sea clutter types, 1785 sea surfaces, and 1624 land types. It is suitable for
ship recognition and detection on complex sea surfaces. Table 5 presents the comparison
information of the above three SAR-ATR datasets.

Table 5. Information comparison between three SAR-ATR datasets.

Dataset Release Time and
Nation

Gathering
Satellites Resolution Number of

Images Size of Images

MSTAR 1996, USA —— 0.3 m × 0.3 m 5950 128 × 128

OpenSARShip 2017/2019, China Sentinel-1A 20 m × 22 m
(2.7 m~3.5 m) × 22 m

11,346 (V1)
34,528 (V2) ——

FUSAR_Ship 2020, China GF-3 (1.7 m~1.754 m) × 1.124 m 6252 512 × 512

4.2. Summary of Datasets for RATR

The research of RATR methods based on echo, RCS, and HRRP characteristics highly
depends on datasets. However, due to the specificity of RATR tasks, there is no typical
public actual radar time-series dataset for deep-learning-based research except SAR datasets.
Most of the datasets for RATR come from electromagnetic simulation, model calculation, or
anechoic chamber measurement carried out by different research teams themselves. Since
the acquisition cost of radar target characteristics is high, and the measurement process
is very challenging, it is well worth studying transferring the existing model based on
simulation data to real data.

5. Challenges and Opportunities

Over the past few decades, RATR has accumulated plenty of significant theoretical
and technical achievements in the process of development for different targets. However, it
is worth noting that deep learning approaches for RATR still face challenges in practical
applications, and for now, they are mainly tested in laboratory settings. In terms of
radar target characteristic analysis, deep-learning-based RATR algorithms, and dataset
construction, etc., they still cannot fully meet the requirements of actual application.

(1) Radar target characteristic analysis

Static and dynamic measurement in the external field is a necessary means to obtain
the real electromagnetic scattering characteristics of the target, but there are many problems
in the implementation process, such as a high experimental cost and difficulty working on
non-cooperative targets, etc. [158]. In the study of radar target characteristics, it is necessary
to reflect the target scattering characteristics more accurately and comprehensively. Electro-
magnetic simulation can quantitatively reflect the real target scattering characteristics [159].
However, it is an urgent problem to boost the fidelity of electromagnetic simulation, espe-
cially the simulation accuracy of wideband target characteristics. In addition, the speed
of electromagnetic simulation should be increased as much as possible under the con-
dition of meeting the requirements of simulation accuracy. Moreover, it is necessary to
expand the range of simulation targets, such as the scattering characteristics of some subtle
parts of the target (e.g., inlet, rotor, antenna, etc.) and different media, especially various
coating materials.
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(2) RATR methods based on deep learning

Based on the research of radar target characteristics, features are extracted according
to the characteristics of different targets. In order to meet the requirements of target recog-
nition in various application environments, especially in a complex jamming environment,
it is inevitable to increase the robustness and effectiveness of feature extraction [160]. How
to implement explainable RATR, secure and trusted RATR, and real-time on-board RATR
methods is an urgent problem to be solved in the future [161]. Thus, there is still a lot of
room for the exploration of diversified deep learning approaches in RATR. In addition, on
the premise of further mining the fine features of the target, the efficiency of recognition
can be improved through multi-feature fusion [162,163]. Multi-feature fusion technology
processes data from multiple sensors at different levels and in various directions, thus
generating novel, practical, and valuable information that cannot be obtained by any single
sensor [164]. Obtaining complete information about the target depends on the synthesis of
data from all aspects. However, how to extract higher-level information for RATR is an
urgent problem that multi-sensor data fusion needs to solve.

(3) Insufficient RATR Dataset

One of the current bottlenecks in applying deep-learning-based algorithms to RATR is
that there are not enough publicly available training samples, except for 2D image datasets.
Different from other application fields, radar application is relatively special, and the
cost of collecting real-world data is high. Hence, simulation modeling is an alternative
scheme to solve this problem, but how to ensure the fidelity of simulation data and obtain
completely alternative data is an extremely challenging problem. In order to further
advance the deep-learning-based RATR research with limited actual radar samples, some
learning strategies should be emphasized, such as the following: (1) data augmentation,
which has been adopted in [129–131]; (2) the GAN [132,133], which has been proven to
be robust to the issue of insufficient training data; (3) various learning strategies such as
transfer learning [134–137], metric learning [138–140], and meta learning [165,166] which
can break through the limitation of data insufficiency; and (4) establishing more advanced
learning-based methods for RATR which seems to be a solution [167].

6. Conclusions

This paper reviews the research progress of radar target characterization and deep-
learning-based approaches applied to RATR, focusing on the wideband and narrowband
target characteristics of radars and various architectures of deep learning networks in
different application scenarios; inevitably, some might be missed. The general results
show that the deep learning methods present good applicability and feasibility in RATR,
especially in some specific scenarios. At present, although some great achievements have
been made, the research of deep learning in RATR is still in the theoretical stage, primarily
tested in laboratory settings, and there are still many challenges and possible limitations
in the application, such as the fidelity of electromagnetic modeling, the robustness of the
model, dataset deficiency, etc. However, there is no denying that deep learning technology
will make a great contribution and improvement in RATR. Therefore, it is advisable to
acknowledge the ongoing challenges and future directions in the field. In addition, it
is hoped that this review will provide readers with new prospects to explore suitable
deep-learning-based techniques for RATR applications.
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